Factor analysis of the relationship of curiosity and device addiction through motivation to digital literacy in the context of smart learning

Yeka Hendriyani, Universitas Negeri Padang, Indonesia
Muhammad Anwar, Universitas Negeri Padang, Indonesia
Hendra Hidayat, Universitas Negeri Padang, Indonesia
Elsa Sabrina, Universitas Negeri Padang, Indonesia
Pardjono Pardjono, Universitas Negeri Yogyakarta, Indonesia
Erni Marlina Saari, Universiti Pendidikan Sultan Idris, Malaysia

Abstract


This study aims to investigate the relationship between curiosity and device addiction factors and motivation towards digital literacy in the context of smart learning. This study used a qualitative approach involving 228 students majoring in Electronics Engineering Education at Universitas Negeri Padang. Data were collected through a Likert-scale questionnaire with a saturated sampling method, ensuring all relevant respondents were involved. To evaluate the measurement model of the research questions, Structural Equation Modeling (SEM) analysis was used. The results revealed that digital literacy is significantly influenced by three main factors: curiosity, gadget addiction and app addiction. Furthermore, the study found that curiosity-driven motivation tends to improve digital literacy, while gadget and app addiction have a negative impact. These findings provide valuable insights for curriculum development, especially in improving digital literacy among electrical engineering education students. In addition, this study highlights the importance of educational interventions that can manage the wise use of technology and promote constructive curiosity. This research contributes to the understanding of how curiosity and excessive use of technology can affect digital literacy skills, which are crucial to face the challenges of the Industrial Revolution 4.0 era. Thus, the results of this study can serve as a basis for more effective educational strategies in preparing students for future digital challenges.

Keywords


curiosity; digital literacy; gadget addiction; industrial revolution RI 4.0; motivation

Full Text:

PDF

References


Abbas, Q., Hussain, S., & Rasool, S. (2019). Digital literacy effect on the academic performance of students at higher education level in Pakistan. Global Social Sciences Review, IV(I), 108–116. https://doi.org/10.31703/gssr.2019(IV-I).14

Abdullah, N. A., & Husaini, H. (2022). The influence of digital reading habits on student performance at vision college: A conceptual framework. Journal of Information and Knowledge Management (JIKM), 12(1), 100–109. https://ir.uitm.edu.my/id/eprint/65778/

Alexander, B., Adams, S., & Cummins, M. (2016). Digital literacy: An NMC Horizon project strategic brief. The New Media Consortium. https://www.learntechlib.org/p/182085/

Ali, R., Jiang, N., Phalp, K., Muir, S., & McAlaney, J. (2015). The emerging requirement for digital addiction labels. In Requirements Engineering: Foundation for Software Quality (pp. 198–213). Springer, Cham. https://doi.org/10.1007/978-3-319-16101-3_13

Amini, M., & Bozorgasl, Z. (2023). A game theory method to cyber-threat information sharing in cloud computing technology. International Journal of Information System Management System, 11. https://advance.sagepub.com/users/655920/articles/708564/master/file/data/Final Manuscript Application-of-Game-Theoretic-Model-for-Cyber-Threat-Intelligence-Framework-26-9-2023/Final Manuscript Application-of-Game-Theoretic-Model-for-Cyber-Threat-Intellig

Amora, J. T. (2021). Convergent validity assessment in PLS-SEM: A loadings-driven approach. Data Analysis Perspectives Journal, 2(3), 1–6. https://www.academia.edu/download/67556414/Amora_2021_DAPJ_2_3_ConvergentValidity.pdf

Anggraeni, F. K. A., Prastowo, S. H. B., & Prihandono, T. (2022). Development of integrated QR code module on physics learning module to increase learning interest and knowing students’ digital literacy. Jurnal Penelitian Pendidikan IPA, 8(5), 2203–2209. https://doi.org/10.29303/jppipa.v8i5.1874

Anwar, M. (2021). Prediction of the graduation rate of engineering education students using artificial neural network algorithms. International Journal of Research in Counseling and Education, 5(1), 15. https://doi.org/10.24036/00411za0002

Anwar, M., Hidayat, H., Yulistiowarno, I. P., Budayawan, K., Zulwisli, Osumah, O. A., & Ardi, Z. (2022). Blended learning based project in electronics engineering education courses: A learning innovation after the Covid-19 Pandemic. International Journal of Interactive Mobile Technologies (IJIM), 16(14), 107–122. https://doi.org/10.3991/ijim.v16i14.33307

Bae, S.-M. (2022). The mediating effect of digital literacy on the rela-tionship between smartphone use motives and life satisfaction for senior citizens in Korea. Iranian Journal of Public Health, 51(2), 336. https://doi.org/10.18502/ijph.v51i2.8686

Barati, M., Taheri-Kharameh, Z., Farghadani, Z., & Rásky, É. (2019). Validity and reliability evaluation of the Persian version of the heart failure-specific health literacy scale. International Journal of Community Based Nursing and Midwifery, 7(3), 222–230. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614354/

Barbeau, K., Boileau, K., Sarr, F., & Smith, K. (2019). Path analysis in Mplus: A tutorial using a conceptual model of psychological and behavioral antecedents of bulimic symptoms in young adults. The Quantitative Methods for Psychology, 15(1), 38–53. https://doi.org/10.20982/tqmp.15.1.p038

Bejaković, P., & Mrnjavac, Ž. (2020). The importance of digital literacy on the labour market. Employee Relations: The International Journal, 42(4), 921–932. https://doi.org/10.1108/ER-07-2019-0274

Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & Management, 57(2), 103168. https://doi.org/10.1016/j.im.2019.05.003

Boettcher, F. (2022). Exploratory study upon military leadership in the 21st Century. What are skills and knowledge required for leadership success? Polish Political Science Yearbook, 51, 39–55. https://doi.org/10.15804/ppsy202227

Broo, D. G., Kaynak, O., & Sait, S. M. (2022). Rethinking engineering education at the age of industry 5.0. Journal of Industrial Information Integration, 25, 100311. https://doi.org/10.1016/j.jii.2021.100311

Buldur, B., & Güvendi, O. N. (2020). Conceptual modelling of the factors affecting oral health‐related quality of life in children: A path analysis. International Journal of Paediatric Dentistry, 30(2), 181–192. https://doi.org/10.1111/ipd.12583

Cetindamar, D., Kitto, K., Wu, M., Zhang, Y., Abedin, B., & Knight, S. (2024). Explicating AI literacy of employees at digital workplaces. IEEE Transactions on Engineering Management, 71, 810–823. https://doi.org/10.1109/TEM.2021.3138503

Chiu, T. K. F. (2023). Student engagement in K-12 online learning amid COVID-19: A qualitative approach from a self-determination theory perspective. Interactive Learning Environments, 31(6), 3326–3339. https://doi.org/10.1080/10494820.2021.1926289

Chiu, T. K. F., Sun, J. C.-Y., & Ismailov, M. (2022). Investigating the relationship of technology learning support to digital literacy from the perspective of self-determination theory. Educational Psychology, 42(10), 1263–1282. https://doi.org/10.1080/01443410.2022.2074966

da Silva, L. B. P., Barreto, B. P., Treinta, F. T., de Resende, L. M. M., Yoshino, R. T., & Pontes, J. (2022). Evolution of soft skills for engineering education in the digital era. In International Conference on Optimization, Learning Algorithms and Applications (pp. 640–653). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-23236-7_44

Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/j.techfore.2021.121092

Dashtestani, R., & Hojatpanah, S. (2022). Digital literacy of EFL students in a junior high school in Iran: Voices of teachers, students and Ministry Directors. Computer Assisted Language Learning, 35(4), 635–665. https://doi.org/10.1080/09588221.2020.1744664

de Oliveira Kaizer, U. A., Alexandre, N. M. C., Rodrigues, R. C. M., Cornélio, M. E., de Melo Lima, M. H., & São‐João, T. M. (2020). Measurement properties and factor analysis of the Diabetic Foot Ulcer Scale‐short form (DFS‐SF). International Wound Journal, 17(3), 670–682. https://doi.org/10.1111/iwj.13310

Flake, J. K., Davidson, I. J., Wong, O., & Pek, J. (2022). Construct validity and the validity of replication studies: A systematic review. American Psychologist, 77(4), 576–588. https://doi.org/10.1037/amp0001006

Güngören, Ö. C., Erdoğan, D. G., Uyanık, G. K., & Tolaman, T. D. (2022). The relationship between cognitive absorption and digital literacy skills among secondary school students. Participatory Educational Research, 9(6), 113–129. https://doi.org/10.17275/per.22.131.9.6

Hauck, M. (2019). Virtual exchange for (critical) digital literacy skills development. European Journal of Language Policy, 11(2), 187–210. https://doi.org/10.3828/ejlp.2019.12

Haven, T. L., & Van Grootel, D. L. (2019). Preregistering qualitative research. Accountability in Research, 26(3), 229–244. https://doi.org/10.1080/08989621.2019.1580147

Hehman, E., Calanchini, J., Flake, J. K., & Leitner, J. B. (2019). Establishing construct validity evidence for regional measures of explicit and implicit racial bias. Journal of Experimental Psychology: General, 148(6), 1022–1040. https://doi.org/10.1037/xge0000623

Hendriyani, Y., & Amrizal, V. A. (2019). The comparison between 3D studio max and blender based on software qualities. Journal of Physics: Conference Series, 1387, 012030. https://doi.org/10.1088/1742-6596/1387/1/012030

Hendriyania, Y., Ramadhanib, D., Nasutionc, T., Susanti, W., & Verawardinae, U. (2020). Examining career development of informatics engineering vocational education students in the industrial revolution 4.0. International Journal of Innovation, Creativity and Change, 11(4), 275–298. https://www.ijicc.net/images/vol11iss4/11422_Hendriyani_2020_E_R.pdf

Henseler, J., & Schuberth, F. (2020). Using confirmatory composite analysis to assess emergent variables in business research. Journal of Business Research, 120, 147–156. https://doi.org/10.1016/j.jbusres.2020.07.026

Hidayat, H., Tasrif, E., Jaya, P., Anwar, M., Thamrin, T., Zulwisli, Z., Hadi, A., Budayawan, K., Husin, M., & Asmara, D. (2021). The empirical analysis of industrial work challenges in the industrial revolution 5.0 towards a Grade Point Average (GPA) for electronic engineering education students. International Journal of Online and Biomedical Engineering (IJOE), 17(9), 21–34. https://doi.org/10.3991/ijoe.v17i09.25679

Jones, R. H., & Hafner, C. A. (2021). Understanding digital literacies. Routledge. https://doi.org/10.4324/9781003177647

Kamaludin, N., Abdullah, A. G., & Komaro, M. (2022). Competency demands of vocational high school graduates in the era of the industrial revolution 4.0. Proceedings of the 4th International Conference on Innovation in Engineering and Vocational Education (ICIEVE 2021), 51–56. https://doi.org/10.2991/assehr.k.220305.011

Kashdan, T. B., Stiksma, M. C., Disabato, D. J., McKnight, P. E., Bekier, J., Kaji, J., & Lazarus, R. (2018). The five-dimensional curiosity scale: Capturing the bandwidth of curiosity and identifying four unique subgroups of curious people. Journal of Research in Personality, 73, 130–149. https://doi.org/10.1016/j.jrp.2017.11.011

Khan, N., Sarwar, A., Chen, T. B., & Khan, S. (2022). Connecting digital literacy in higher education to the 21st century workforce. Knowledge Management & E-Learning: An International Journal, 14(1), 46–61. https://doi.org/10.34105/j.kmel.2022.14.004

Kyle, G., Landon, A., Vaske, J., & Wallen, K. (2020). Tools for assessing the psychometric adequacy of latent variables in conservation research. Conservation Biology, 34(6), 1353–1363. https://doi.org/10.1111/cobi.13625

Liu, Z., Hu, R., & Bi, X. (2023). The effects of social media addiction on reading practice: A survey of undergraduate students in China. Journal of Documentation, 79(3), 670–682. https://doi.org/10.1108/JD-05-2022-0111

Menggo, S., Midun, H., & Pandor, P. (2021). Students’ digital literacy competence and English study habits. Proceedings of the 1st International Conference on Education, Humanities, Health and Agriculture, ICEHHA 2021, 3-4 June 2021, Ruteng, Flores, Indonesia. https://doi.org/10.4108/eai.3-6-2021.2310655

Morgan, A., Sibson, R., & Jackson, D. (2022). Digital demand and digital deficit: Conceptualising digital literacy and gauging proficiency among higher education students. Journal of Higher Education Policy and Management, 44(3), 258–275. https://doi.org/10.1080/1360080X.2022.2030275

Mubai, A., Ambiyar, A., Irfan, D., & Rasul, M. S. (2023). Flipped Direct Instruction (FDI): A new practicum learning model in vocational education. International Journal of Learning, Teaching and Educational Research, 22(7), 547–565. http://ijlter.myres.net/index.php/ijlter/article/view/1700

Nawaila, M. B., Kanbul, S., Kani, U. M., & Magaji, M. M. (2022). DLMA_NEU: Digital literacy mobile application for children. International Journal of Interactive Mobile Technologies (IJIM), 16(8), 49–64. https://doi.org/10.3991/ijim.v16i08.25213

Nazzal, A., Thoyib, A., Zain, D., & Hussein, A. S. (2022). The effect of digital literacy and website quality on purchase intention in internet shopping through mediating variable: The case of internet users in Palestine. Webology, 19(1), 2414–2434. https://doi.org/10.14704/WEB/V19I1/WEB19163

Nofriansyah, D., Ganefri, G., & Ridwan, R. (2020). A new learning model of software engineering in vocational education. International Journal of Evaluation and Research in Education (IJERE), 9(3), 572. https://doi.org/10.11591/ijere.v9i3.20482

Noh, Y. (2017). A study on the effect of digital literacy on information use behavior. Journal of Librarianship and Information Science, 49(1), 26–56. https://doi.org/10.1177/0961000615624527

Özkan, U. B. (2022). The relationship between digital reading disposition and internet-based reading motivation: A study on pre-service teachers. Psycho-Educational Research Reviews, 11(2), 172–183. https://doi.org/10.52963/PERR_Biruni_V11.N2.11

Pala, Ş. M., & Başıbüyük, A. (2021). The predictive effect of digital literacy, self-control and motivation on the academic achievement in the science, technology and society learning area. Technology, Knowledge and Learning, 28, 369–385. https://doi.org/10.1007/s10758-021-09538-x

Pangrazio, L. (2016). Reconceptualising critical digital literacy. Discourse: Studies in the Cultural Politics of Education, 37(2), 163–174. https://doi.org/10.1080/01596306.2014.942836

Parashakti, R. D., Fahlevi, M., Ekhsan, M., & Hadinata, A. (2020). The influence of work environment and competence on motivation and its impact on employee performance in health sector. Proceedings of the 3rd Asia Pacific International Conference of Management and Business Science (AICMBS 2019). https://doi.org/10.2991/aebmr.k.200410.040

Purnama, Y., Ismail, I., Noviandri, D., Hendriyani, Y., Phong, N. T., & Darmawan, I. P. A. (2020). Expert system in detecting children’s intelligence using certainty factor. Journal of Critical Reviews, 7(1). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3966341

Purwanto, A. (2021). Partial Least Squares Structural Squation Modeling (PLS-SEM) analysis for social and management research: A literature review. Journal of Industrial Engineering & Management Research, 2(4), 114–123. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3982764

Rhemtulla, M., van Bork, R., & Borsboom, D. (2020). Worse than measurement error: Consequences of inappropriate latent variable measurement models. Psychological Methods, 25(1), 30–45. https://doi.org/10.1037/met0000220

Riyadi, S., Nugroho, M., & Arif, D. (2021). The effect of supply network and management control system on the efficiency and profitability of manufacturing companies. Uncertain Supply Chain Management, 9(4), 963–972. https://doi.org/10.5267/j.uscm.2021.7.004

Rozgonjuk, D., Rosenvald, V., Janno, S., & Täht, K. (2016). Developing a shorter version of the Estonian Smartphone Addiction Proneness Scale (E-SAPS18). Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 10(4). https://doi.org/10.5817/CP2016-4-4

Schweinsberg, M., Feldman, M., Staub, N., van den Akker, O. R., van Aert, R. C. M., van Assen, M. A. L. M., Liu, Y., Althoff, T., Heer, J., Kale, A., Mohamed, Z., Amireh, H., Venkatesh Prasad, V., Bernstein, A., Robinson, E., Snellman, K., Amy Sommer, S., Otner, S. M. G., Robinson, D., … Luis Uhlmann, E. (2021). Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis. Organizational Behavior and Human Decision Processes, 165, 228–249. https://doi.org/10.1016/j.obhdp.2021.02.003

Silvhiany, S., Huzaifah, S., & Ismet, I. (2021). Critical digital literacy: EFL students’ ability to evaluate online sources. Indonesian Journal of EFL and Linguistics, 6(1), 249. https://doi.org/10.21462/ijefl.v6i1.364

Solberg, E., Traavik, L. E. M., & Wong, S. I. (2020). Digital mindsets: Recognizing and leveraging individual beliefs for digital transformation. California Management Review, 62(4), 105–124. https://doi.org/10.1177/0008125620931839

Soltani, F., Moarefvand, P., Alinia, F., & Afzal, P. (2019). Characterization of rare earth elements by coupling multivariate analysis, factor analysis, and geostatistical simulation; case-study of Gazestan deposit, central Iran. Journal of Mining and Environment (JME), 10(4), 929–945. https://doi.org/10.22044/jme.2019.8374.1716

Su, J., Ng, D. T. K., & Chu, S. K. W. (2023). Artificial Intelligence (AI) literacy in early childhood education: The challenges and opportunities. Computers and Education: Artificial Intelligence, 4, 100124. https://doi.org/10.1016/j.caeai.2023.100124

Sujiarto, H., Solahudin, M., Mudrikah, A., Kosasih, U., & Trisnamansyah, S. (2022). The influence of social support, digital literacy ability and self-efficacy on students’ academic resilience. Specialusis Ugdymas, 1(43), 9351–9373. http://www.sumc.lt/index.php/se/article/view/1427/1090

Sukardi, S., & Hendriyani, Y. (2021). Conceptual model of expert system-based smart learning: Preliminary analysis. Proceedings of the 2nd Progress in Social Science, Humanities and Education Research Symposium (PSSHERS 2020), 376–381. https://doi.org/10.2991/assehr.k.210618.070

Wallace, M. P., & Leong, E. I. L. (2020). Language learning motivation among primary EFL learners. Journal of Language Teaching and Research, 11(2), 221. https://doi.org/10.17507/jltr.1102.10

Williamson, H. C., Bornstein, J. X., Cantu, V., Ciftci, O., Farnish, K. A., & Schouweiler, M. T. (2022). How diverse are the samples used to study intimate relationships? A systematic review. Journal of Social and Personal Relationships, 39(4), 1087–1109. https://doi.org/10.1177/02654075211053849

Yusoff, A. S. M., Peng, F. S., Razak, F. Z. A., & Mustafa, W. A. (2020). Discriminant validity assessment of religious teacher acceptance: The use of HTMT criterion. Journal of Physics: Conference Series, 1529(4), 042045. https://doi.org/10.1088/1742-6596/1529/4/042045

Yustika, G. P., & Iswati, S. (2020). Digital literacy in formal online education: A short review. Dinamika Pendidikan, 15(1), 66–76. https://doi.org/10.15294/dp.v15i1.23779

Zulkarnain, Z., Heleni, S., & Thahir, M. (2020). Digital literacy skills of math students through e-learning in COVID-19 era: A case study in Universitas Riau. Journal of Physics: Conference Series, 1663(1), 012015. https://doi.org/10.1088/1742-6596/1663/1/012015




DOI: https://doi.org/10.21831/jpv.v13i3.62720

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Our journal indexed by:
       

ISSN 2088-2866 (print) || ISSN 2476-9401 (online)

View Journal Visitor Stats