Increasing measurement accuracy: Scaling effect on academic resilience instrument using Method of Successive Interval (MSI) and Method of Summated Rating Scale (MSRS)
Farida Agus Setiawati, Universitas Negeri Yogyakarta, Indonesia
Abstract
A research instrument is crucial and must meet the requirements to be valid and reliable in content and construction. Not infrequently, various methods are tried to increase the accuracy of research instruments, one of them being a simple method such as the scaling technique. This research aims to improve measurement accuracy by using scaling techniques through the process of successive intervals and summated rating scale in confirmatory factor analysis of the Academic Resilience (ARS) instrument. This research is a descriptive exploratory study using a questionnaire consisting of five answer choices (5-point Likert scale) as the research instrument. Participants in this research were 300 students. Data analysis was conducted using Microsoft Excel and R programs. The research results showed that there was a significant difference in the results of the reliability and validity of the constructs as well as the parameters in the confirmatory factor analysis of the ARS instrument before and after transformation with the method of successive intervals and summated rating scale. This research contributes to implementing quantitative data scaling practices in measurement research, and it has been proven that there was an increase in measurement accuracy after scaling.
Keywords
Full Text:
PDFReferences
Asdar, B. (2011). Method of successive interval in community research: Ordinal transformation data to interval data in Mathematic Education Study. International Journal of Social Science and Humanities Research, 4(2), 356-363.
Bahar, R., Setiawati, F. A., Sutarji, A., Hidayat, O., & Sudarna, N. (2021). Perbandingan metode Skala Thurstone dalam mengukur kompetensi kepribadian guru. Measurement In Educational Research, 1(2), 97-103. doi: 10.33292/meter.v1i2.162
Cassidy, S. (2016). The Academic Resilience Scale (ARS-30): A new multidimensional construct measure. Frontiers in psychology, 7, 1787. doi: 10.3389/fpsyg.2016.01787
Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS quarterly, vii-xvi. https://www.jstor.org/stable/249674
Gana, K. & Broc, G. (2019). Structural equation modeling with lavaan. John Wiley & Sons. doi: 10.1002/9781119579038
García-Crespo, F. J., Fernández-Alonso, R., & Muñiz, J. (2021). Academic resilience in European countries: The role of teachers, families, and student profiles. Plos one, 16(7), e0253409. doi: 10.1371/journal.pone.0253409
Hair, J., Hollingsworth, C. L., Randolph, A. B., & Chong, A. Y. L. (2017). An updated and expanded assessment of PLS-SEM in information systems research. Industrial management & data systems, 117(3), 442-458. doi: 10.1108/imds-04-2016-0130
Huang, F., Wang, H., Wang, Z. et al. (2020). Psychometric properties of the perceived stress scale in a community sample of Chinese. BMC Psychiatry, 20, p. 130. doi: 10.1186/s12888-020-02520-4
Jamieson, S. (2004). Likert scales: How to (ab) use them? Medical education, 38(12), 1217-1218. doi: 10.1108/imds-04-2016-0130
Kusuma, M., Wilujeng, I., Susongko, P., Setiawati, F. A., & Yuenyong, C. (2023). Efek summated rating scale pada instrumen Community of Inquiry dalam pembelajaran daring selama masa pandemi. Measurement In Educational Research, 3(1), 17-26. doi: 10.33292/meter.v3i1.232
Kosherbayeva, A. N., Issaliyeva, S., Begimbetova, G. A., Kassymova, G. K., Kosherbayev, R., & Kalimoldayeva, A. K. (2024). An overview study on the educational psychological assessment by measuring students ‘stress levels. Cakrawala Pendidikan: Jurnal Ilmiah Pendidikan, 43(1), 1-18. doi: 10.21831/cp.v43i1.66276
Martin, A. J., & Marsh, H. W. (2006). Academic resilience and its psychological and educational correlates: A construct validity approach. Psychology in the Schools, 46(1), 53–83. https://doi.org/10.1002/pits.20149.
Mondiana, Y. Q., Pramoedyo, H., & Sumarminingsih, E. (2018). Structural equation modeling on Likert scale data with transformation by successive interval method and with no transformation. Int. J. Sci. Res. Publ, 8(5), 398-405. doi: 10.29322/ijsrp.8.5.2018.p7751
Musa, A. F., Yasin, M. S. M., Smith, J., Yakub, M. A., & Nordin, R. B. (2021). The Malay version of SF-36 health survey instrument: testing data quality, scaling assumptions, reliability, and validity in post-coronary artery bypass grafting (CABG) surgery patients at the National Heart Institute (Institut Jantung Negara—IJN), Kuala Lumpur. Health and quality of life outcomes, 19, 1-11. doi: 10.1186/s12955-020-01658-9
Ningsih, S., & Dukalang, H. H. (2019). Penerapan metode suksesif interval pada analsis regresi linier berganda. Jambura Journal of Mathematics, 1(1), 43-53. doi: 10.34312/jjom.v1i1.1742
Pawar, Y. (2021). Impact of digitalization on mental wellness of students. International Journal of Social Science and Economic Research, 6 (6), 1807- 1816. doi: 10.46609/ijsser.2021.v06i06.014
Pada, A. U. T., Mustakim, S. S., & Subali, B. (2018). Construct validity of creative thinking skills instrument for biology student teachers in the subject of human physiology. Jurnal Penelitian dan Evaluasi Pendidikan, 22(2), 119-129. doi: 10.21831/pep.v22i2.22369
Ramadhana, M. R., Putra, A., Pramonojati, T. A., Haqqu, R., Dirgantara, P., Ismail, O. A., &; Wijaksono, D. S. (2021). Learning Readiness as a Predictor of Academic Resilience in Online Learning during School from Home. Library Philosophy and Practice(ejournal). 5362. https://digitalcommons.unl.edu/libphilprac/5362
Ricketts, S., Engelhard, G., Jr., & Chang, M. (2017). Development and validation of a scale to measure academic resilience in mathematics. European Journal of Psychological Assessment, 33(2), 79–86. doi: 10.1027/1015-5759/a000274.
Romano, L., Angelini, G., Consiglio, P., & Fiorilli, C. (2021). Academic resilience and engagement in high school students: The mediating role of perceived teacher emotional support. European journal of investigation in health, psychology, and education, 11(2), 334-344. doi: 10.3390/ejihpe11020025
Rudd, G., Meissel, K., & Meyer, F. (2021). Measuring academic resilience in quantitative research: A systematic review of the literature. Educational Research Review, 34, 100402. doi: 10.1016/j.edurev.2021.100402
Setiawati, F. A. (2014). Perbandingan berbagai metode penskalaan yang dikembangkan Thurstone. Jurnal Penelitian Ilmu Pendidikan, 7(1). doi: 10.21831/jpipfip.v7i1.3114
Setiawati, F. A., Mardapi, D., & Azwar, S. (2013). Penskalaan teori klasik instrumen multiple intelligences tipe Thurstone dan Likert. Jurnal Penelitian dan Evaluasi Pendidikan, 17(2), 259-274. doi: 10.21831/pep.v17i2.1699
Shengyao, Y., Salarzadeh Jenatabadi, H., Mengshi, Y., Minqin, C., Xuefen, L., & Mustafa, Z. (2024). Academic resilience, self-efficacy, and motivation: The role of parenting style. Scientific reports, 14(1), 5571. doi: 10.1038/s41598-024-55530-7
Solimun, S., Fernandes, A. A. R., & Arisoesilaningsih, E. (2017, December). The efficiency of parameter estimation of latent path analysis using summated rating scale (SRS) and method of successive interval (MSI) for transformation of score to scale. In AIP Conference Proceedings (Vol. 1913, No. 1). AIP Publishing. doi: 10.1063/1.5016671
Sumin, Sukmawati, F., Setiawati, F.A., Asmawi, S. (2022). The Impact of Z-Score Transformation Scaling on the Validity, Reliability, and Measurement Error of Instrument SATS-36. JP3I (Jurnal Pengukuran Psikologi dan Pendidikan Indonesia), 11(2), 166-180. doi: 10.15408/jp3i.v11i2.26591
Taqwa, M. (2021, January). Metode suksesif interval pada motivasi belajar matematika selama Covid-19 berbasis MSLQ dengan Software R. In Prosandika UNIKAL (Prosiding Seminar Nasional Pendidikan Matematika Universitas Pekalongan) (Vol. 2, pp. 29-40).
https://proceeding.unikal.ac.id/index.php/sandika/article/view/506/410
Trigueros, R., Magaz-González, A. M., García-Tascón, M., Alias, A., & Aguilar-Parra, J. M. (2020). Validation and adaptation of the academic-resilience scale in the Spanish context. International Journal of Environmental Research and Public Health, 17(11), 3779. doi: 10.3390/ijerph17113779
Trinidad, S., Aldridge, J., & Fraser, B. (2005). Development, validation, and use of the Online Learning Environment Survey. Australasian Journal of Educational Technology, 21(1). doi: 10.14742/ajet.1343
Waryanto, B., & Millafati, Y. A. (2006). Transformasi data skala ordinal ke interval dengan menggunakan makro Minitab. Informatika Pertanian, 15, 881-895.
Watkins, M. W. (2018). Exploratory factor analysis: A guide to best practice. Journal of Black Psychology, 44(3), 219-246. doi: 10.1177/0095798418771807
DOI: https://doi.org/10.21831/pep.v28i1.69334
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Find Jurnal Penelitian dan Evaluasi Pendidikan on:
ISSN 2338-6061 (online) || ISSN 2685-7111 (print)
View Journal Penelitian dan Evaluasi Pendidikan Visitor Statistics