Multiple Intelligence-based basketball performance assessment in high school

Nurul Huda, Universitas Negeri Yogyakarta, Indonesia
Yustinus Sukarmin, Universitas Negeri Yogyakarta, Indonesia
Dimyati Dimyati, Universitas Negeri Yogyakarta, Indonesia


This study aims to develop performance assessment instruments in the MI (Multiple Intelligences) based basketball game by: (1) proving the validity of the content of the instrument, (2) proving the validity of the instrument construct, (3) conducting a model fit analysis and item fit with IRT (Item Response Theory), and (4) analyzing the effectiveness of the developed instrument product. Methods in developing assessment models using IDDIE (analysis, design, development, implementation, and evaluation). The research subjects used were 1053 students in five schools in five districts in Yogyakarta Province. The development of a scoring model resulted in (1) the validity of the contents of the five raters using the V-Aiken method yielding a value of 0.92; (2) the validity of the performance instrument construct shows 28 aspects of the warning with a loading factor of >0.3; (3) the fit model for this instrument matches the ability of the learner between -4.817 to 2.24; (4) the effectiveness of the product showed a high value, i.e., 38% of users felt "very satisfied," 56% of users felt "satisfied," and 6% of users felt "dissatisfied."


performance assessment; basketball game; multiple intelligence

Full Text:



Abdulmohsen, M. A. (2018). The effect of using multiple intelligences theory strategy on developing some basketball skills with preparatory schools pupils. Journal of Applied Sports Science, 8(1), 19–24.

Anderson, L. W. (2003). Classroom assessment: Enhancing the quality of teacher decision making. Routledge.

Berlian, M., Mujtahid, I. M., Vebrianto, R., & Thahir, M. (2020). Multiple intelligences instrument development: Identification system of multiple intelligences tutor. REiD (Research and Evaluation in Education), 6(2), 119–129.

Bond, T. G., Fox, C. M., & Lacey, H. (2007). Applying the Rasch model: Fundamental measurement in the social sciences (2nd ed.). Routledge.

Branch, R. M. (2009). Instructional design: The ADDIE approach (Vol. 722). Springer Science & Business Media.

Ernawati, E., Tsurayya, H., & Ghani, A. R. A. (2019). Multiple intelligence assessment in teaching English for young learners. Research and Evaluation in Education, 5(1), 21–29.

Gardner, H. (2000). Intelligence reframe: Multiple intelligences for 21st century. Basic Books.

Gardner, H. (2011). Frames of mind the theory of multiple intelligences. Basic Books.

Gurcay, D., & Ferah, H. O. (2017). The effects of multiple intelligences based instruction on students’ physics achievement and attitudes. Journal of Baltic Science Education, 16(5), 666–677.

Ibnian, S. S. K., & Hadban, A. D. (2013). Implications of multiple intelligences theory in ELT field. International Journal of Humanities and Social Science, 3(4), 292–297.

Law No. 20 of 2003 concerning the National Education System, (2003).

Local Government Agency. (2021). Aplikasi dataku Daerah Istimewa Yogyakarta. Pemerintah Daerah D. I. Yogyakarta.

Mohamad, M. M., Sulaiman, N. L., Sern, L. C., & Salleh, K. M. (2015). Measuring the validity and reliability of research instruments. Procedia - Social and Behavioral Sciences, 204, 164–171.

Murat, K. (2015). Exploring the impact of sports participation on multiple intelligence development of high school female students. Educational Research and Reviews, 10(14), 2006–2011.

Naga, D. S. (2004). Ketidaktepatan penggunaan validitas butir dan koefisien reliabilitas dalam penelitian pendidikan dan psikologi. Jurnal Ilmu Pendidikan, 11(2), 99–106.

OECD. (2018). PISA 2018 results: Insight and interpretations (A. Schleicher (ed.)). OECD International Publishing.

Okudan, B. (2021). Investigation of the relationship between cognitive behavioral physical activity and multiple intelligence levels in different team sports athletes. Progress in Nutrition, 23(S1), e2021158.

Pérez, L. M. R., Nieto, M. P., Otero, I. R., Amengual, A. R., & Manzano, J. A. N. (2014). Relationships among multiple intelligences, motor performance and academic achievement in secondary school children. ; 2014; 6(6). International Journal of Academic Research, 6(6), 1–9.

Pratama, R. (2017). Hubungan kemampuan gerak body-kinesthetic fisik (multiple intelligences) dengan hasil belajar mata pelajaran Biologi di SMA Negeri 2 Bandar Lampung [Undergraduate thesis, UIN Raden Intan Lampung, Bandar Lampung].

Pratama, R., Handoko, A., & Anwar, C. (2020). Association of physical body-kinesthetic (Multiple Intelligences) mobility with learning results Biology in SMA Negeri 2 Bandar Lampung. Journal of Physics: Conference Series, 1521(4), 042001.

Pratiwi, W. N., Rochintaniawati, D., & Agustin, R. R. (2018). The effect of multiple intelligence-based learning towards students’ concept mastery and interest in learning matter. Journal of Physics: Conference Series, 1013, 012075.

Rahman, I., Gani, R. A., & Achmad, I. Z. (2020). Persepsi siswa pada pembelajaran Pendidikan Jasmani Olahraga dan Kesehatan tingkat SMA. Jurnal Pendidikan Olahraga, 9(2), 144–154.

Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5–6), 341–358.

Santoso, S. (2017). Menguasai statistik dengan SPSS 24. Elex Media Komputindo.

Setiawan, R., Mardapi, D., Aman, A., & Karyanto, U. B. (2020). Multiple intelligences-based creative curriculum: The best practice. European Journal of Educational Research, 9(2), 611–627.

Siskandar, S. (2012). Pengembangan multiple intelligences melalui kegiatan non-intrakurikuler dalam rangka meningkatkan mutu proses dan hasil pembelajaran. Jurnal Ekonomi Dan Pendidikan, 5(2), 119–135.

Șuruba-Rusen (Vasiliu), A.-M., Murărețu, D., Murărețu, D. C., Petre, R.-L., & Teodoru, M. D. (2020). Analysis on the multiple intelligences of students from Faculty of Physical Education and Sports. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 11(4Sup1), 185–199.

Swaminathan, H., Hambleton, R. K., & Rogers, H. J. (2006). 21 Assessing the fit of Item Response Theory models. In Handbook of statistics (pp. 683–718). Elsevier.

Taber, K. S. (2018). The use of Cronbach’s Alpha when developing and reporting research instruments in Science Education. Research in Science Education, 48(6), 1273–1296.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Find Jurnal Penelitian dan Evaluasi Pendidikan on:


ISSN 2338-6061 (online)    ||    ISSN 2685-7111 (print)

View Journal Penelitian dan Evaluasi Pendidikan Visitor Statistics