Implementation of forecasting methods to determine teaching and learning model policies during a pandemic in border areas

Irfan Wahyu Prananto, (Scopus ID: 57220579532) Universitas Negeri Yogyakarta, Indonesia
Tubagus Pamungkas, Universitas Riau Kepulauan, Indonesia
Riyan Hidayat, Faculty of Educational Studies, Universiti Putra Malaysia, Malaysia, Malaysia

Abstract


Indonesia is an archipelagic country with more than seventeen thousand islands, both in the interior and border areas. The border area is directly or indirectly a barrier to other countries. The purpose of this study is to provide an overview for readers to conduct forecasting method research. This study aims to describe the profile of the spread of the virus and provide input on education policies in border areas for forecasting. This research may need to be more thematically up-to-date and slow in publication. Still, researchers believe this is useful for policymakers to determine policies from reading existing patterns using equations in forecasting methods. Especially in the era of disruption, which is full of uncertainty, knowledge like this is needed to make predictions. In this study, the characterization is divided into gender, age, occupation, and interaction. The results showed that the gender of COVID-19 patients in the border areas had the same proportion of both men and women, the age range of twenty to forty-eight years had a greater probability of being affected, employees/private sector were more dominant to be involved, groups and the most prevalent cause of transmission of COVID-19 is family interaction. In addition, using Brown's double smoothing exponential method shows that predictions for July, August, and November for suspects and patients with COVID-19 will increase. Thus, the recommendation from this research for the Education Office as a policy maker in border areas is that school learning activities should be postponed until conditions are feasible. 


Implementasi metode peramalan guna menentukan kebijakan model belajar mengajar saat pandemic di daerah perbatasan

Indonesia merupakan negara kepulauan yang terdiri lebih dari tujuh belas ribu pulau, baik yang berada di pedalaman maupun di daerah perbatasan. Daerah perbatasan secara langsung atau tidak langsung menjadi pembatas dengan negara lain. Tujuan penelitian ini secara umum memberikan gambaran kepada para pembaca untuk melakukan sebuah penelitian metode peramalan. Secara kusus, dalam penelitian ini bertujuan untuk menggambarkan profil sebaran virus, dan memberikan masukan kebijakan pendidikan di daerah perbatasan atas peramalan yang dilakukan. Penelitian ini mungkin tidak up to date secara tema dan lambat dalam publikasi, namun peneliti berkeyakinan ini berguna bagi pengambil kebijakan untuk menentukan kebijakan dari membaca pola-pola yang ada menggunakan persamaan dalam metode peramalan. Apalagi di era disrupsi yang penuh dengan ketidak pastian, pengetahuan seperti ini sangat diperlukan untuk memprediksi. Dalam penelitian ini, karakterisasi dibagi menjadi empat yaitu jenis kelamin, usia, pekerjaan, dan interaksi. Hasil penelitian menunjukkan bahwa jenis kelamin pada pasien COVID-19 di daerah perbatasan memiliki proporsi yang sama baik laki-laki maupun perempuan, rentang usia dua puluh sampai empat puluh delapan tahun memiliki kemungkinan lebih besar untuk terkena, pegawai/swasta lebih dominan untuk terkena, kelompok lain dan juga penyebab paling dominan penularan COVID -19 adalah interaksi keluarga. Selain itu dengan menggunakan metode double smoothing exponential Brown menunjukkan bahwa prediksi Juli, Agustus hingga November kondisi suspek dan pasien COVID -19 akan naik. Dengan demikian, rekomendasi dari penelitian ini  untuk Dinas Pendidikan sebagai pengambil kebijakan di daerah perbatasan adalah kegiatan belajar di sekolah sebaiknya ditunda hingga keadaan sudah bisa dikatakan layak.


Keywords


forecasting methods; Covid-19; education policy; teaching and learning activities

Full Text:

PDF

References


Aimran, A. N., & Afthanorhan, A. (2014). A comparison between single exponential smoothing (SES), double exponential smoothing (DES), holt’s (brown) and adaptive response rate exponential smoothing (ARRES) techniques in forecasting Malaysia population. Global Journal of Mathematical Analysis, 2(4), 276. https://doi.org/10.14419/gjma.v2i4.3253

Armstrong, J. S. (2001). Evaluating forecasting methods. In Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer. https://repository.upenn.edu/handle/20.500.14332/39302

Baker, M. G., Peckham, T. K., & Seixas, N. S. (2020). Estimating the burden of United States workers exposed to infection or disease: A key factor in containing risk of COVID-19 infection. PLOS ONE, 15(4), e0232452. https://doi.org/10.1371/journal.pone.0232452

Batty, M. (1969). Monitoring an exponential smoothing forecasting system. Journal of the Operational Research Society, 20(3), 319–325. https://doi.org/10.1057/jors.1969.76

Breslow, N. (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika, 57(3), 579–594. https://doi.org/10.1093/biomet/57.3.579

Brown, B. M., & Hettmansperger, T. P. (2002). Kruskal–Wallis, multiple comparisons and efron dice. Australian & New Zealand Journal of Statistics, 44(4), 427–438. https://doi.org/10.1111/1467-842X.00244

Brumback, B., & Srinath, M. (1987). A Chi-square test for fault-detection in Kalman filters. IEEE Transactions on Automatic Control, 32(6), 552–554. https://doi.org/10.1109/TAC.1987.1104658

Burdorf, A., Porru, F., & Rugulies, R. (2020). The COVID-19 (Coronavirus) pandemic: Consequences for occupational health. Scandinavian Journal of Work, Environment & Health, 46(3), 229–230. https://doi.org/10.5271/sjweh.3893

Bwire, G. M. (2020). Coronavirus: Why men are more vulnerable to Covid-19 than women? SN Comprehensive Clinical Medicine, 2(7), 874–876. https://doi.org/10.1007/s42399-020-00341-w

Chan, Y., & Walmsley, R. P. (1997). Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Physical Therapy, 77(12), 1755–1761. https://doi.org/10.1093/ptj/77.12.1755

Chatfield, C., Wheelwright, S. C., & Makridakis, S. (1978). Forecasting methods for management. Journal of the Royal Statistical Society. Series A (General), 141(1), 113. https://doi.org/10.2307/2344788

Chen, Y., Zheng, L., Song, J., Huang, L., & Zheng, J. (2022). Revealing the impact of urban form on COVID-19 based on machine learning: Taking Macau as an example. Sustainability, 14(21), 14341. https://doi.org/10.3390/su142114341

Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., Pastore y Piontti, A., Mu, K., Rossi, L., Sun, K., Viboud, C., Xiong, X., Yu, H., Halloran, M. E., Longini, I. M., & Vespignani, A. (2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489), 395–400. https://doi.org/10.1126/science.aba9757

Cruz, A. T., & Zeichner, S. L. (2020). COVID-19 in children: Initial characterization of the pediatric disease. Pediatrics, 145(6). https://doi.org/10.1542/peds.2020-0834

Dalton, L. A., & Dougherty, E. R. (2011). Bayesian minimum mean-square error estimation for classification error—Part I: Definition and the Bayesian MMSE error estimator for discrete classification. IEEE Transactions on Signal Processing, 59(1), 115–129. https://doi.org/10.1109/TSP.2010.2084572

Dong, Y., Mo, X., Hu, Y., Qi, X., Jiang, F., Jiang, Z., & Tong, S. (2020). Epidemiology of COVID-19 among children in China. Pediatrics, 145(6). https://doi.org/10.1542/peds.2020-0702

Goh, E., & Baum, T. (2021). Job perceptions of generation Z hotel employees towards working in Covid-19 quarantine hotels: The role of meaningful work. International Journal of Contemporary Hospitality Management, 33(5), 1688–1710. https://doi.org/10.1108/IJCHM-11-2020-1295

Hamadani, J. D., Hasan, M. I., Baldi, A. J., Hossain, S. J., Shiraji, S., Bhuiyan, M. S. A., Mehrin, S. F., Fisher, J., Tofail, F., Tipu, S. M. M. U., Grantham-McGregor, S., Biggs, B.-A., Braat, S., & Pasricha, S.-R. (2020). Immediate impact of stay-at-home orders to control COVID-19 transmission on socioeconomic conditions, food insecurity, mental health, and intimate partner violence in Bangladeshi women and their families: An interrupted time series. The Lancet Global Health, 8(11), e1380–e1389. https://doi.org/10.1016/S2214-109X(20)30366-1

Hannan, E. J., & Kavalieris, L. (1984). A method for autoregressive-moving average estimation. Biometrika, 71(2), 273–280. https://doi.org/10.1093/biomet/71.2.273

Hansun, S. (2013). A new approach of moving average method in time series analysis. 2013 Conference on New Media Studies (CoNMedia), 1–4. https://doi.org/10.1109/CoNMedia.2013.6708545

Hecke, T. Van. (2012). Power study of anova versus Kruskal-Wallis test. Journal of Statistics and Management Systems, 15(2–3), 241–247. https://doi.org/10.1080/09720510.2012.10701623

Hidayat, A. A., Arief, Z., & Happyanto, D. C. (2015). Mobile application with simple moving average filtering for monitoring finger muscles therapy of post-stroke people. 2015 International Electronics Symposium (IES), 1–6. https://doi.org/10.1109/ELECSYM.2015.7380803

Huang, J., Li, C., & Yu, J. (2012). Resource prediction based on double exponential smoothing in cloud computing. 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2056–2060. https://doi.org/10.1109/CECNet.2012.6201461

Jean Lee, S. K. (1992). Quantitative versus qualitative research methods — Two approaches to organisation studies. Asia Pacific Journal of Management, 9(1), 87–94. https://doi.org/10.1007/BF01732039

Jin, J.-M., Bai, P., He, W., Wu, F., Liu, X.-F., Han, D.-M., Liu, S., & Yang, J.-K. (2020). Gender differences in patients with COVID-19: Focus on severity and mortality. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00152

Kanetaki, Z., Stergiou, C., Bekas, G., Jacques, S., Troussas, C., Sgouropoulou, C., & Ouahabi, A. (2022). Grade prediction modeling in hybrid learning environments for sustainable engineering education. Sustainability, 14(9), 5205. https://doi.org/10.3390/su14095205

Kelvin, A. A., & Halperin, S. (2020). COVID-19 in children: The link in the transmission chain. The Lancet Infectious Diseases, 20(6), 633–634. https://doi.org/10.1016/S1473-3099(20)30236-X

King, W. C., Rubinstein, M., Reinhart, A., & Mejia, R. (2021). COVID-19 vaccine hesitancy January-May 2021 among 18–64 year old US adults by employment and occupation. Preventive Medicine Reports, 24, 101569. https://doi.org/10.1016/j.pmedr.2021.101569

Kopel, J., Perisetti, A., Roghani, A., Aziz, M., Gajendran, M., & Goyal, H. (2020). Racial and gender-based differences in COVID-19. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00418

Kraemer, M. U. G., Yang, C.-H., Gutierrez, B., Wu, C.-H., Klein, B., Pigott, D. M., du Plessis, L., Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., & Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. https://doi.org/10.1126/science.abb4218

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., & Khosrawipour, T. (2020). The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of Travel Medicine, 27(3). https://doi.org/10.1093/jtm/taaa037

Lee, S., & Fambro, D. B. (1999). Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Record: Journal of the Transportation Research Board, 1678(1), 179–188. https://doi.org/10.3141/1678-22

Lekfuangfu, W. N., Piyapromdee, S., Porapakkarm, P., & Wasi, N. (2020). On Covid-19: New implications of job task requirements and spouse’s occupational sorting. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3583954

Lewandowski, P. (2020). Occupational exposure to contagion and the spread of Covid-19 in Europe. SSRN Electronic Journal, IZA Discus. https://doi.org/10.2139/ssrn.3596694

Murphy, A. H. (1988). Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116(12), 2417–2424. https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2

Posfay-Barbe, K. M., Wagner, N., Gauthey, M., Moussaoui, D., Loevy, N., Diana, A., & L’Huillier, A. G. (2020). COVID-19 in children and the dynamics of infection in families. Pediatrics, 146(2). https://doi.org/10.1542/peds.2020-1576

Prem, K., Liu, Y., Russell, T. W., Kucharski, A. J., Eggo, R. M., Davies, N., Jit, M., Klepac, P., Flasche, S., Clifford, S., Pearson, C. A. B., Munday, J. D., Abbott, S., Gibbs, H., Rosello, A., Quilty, B. J., Jombart, T., Sun, F., Diamond, C., … Hellewell, J. (2020). The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. The Lancet Public Health, 5(5), e261–e270. https://doi.org/10.1016/S2468-2667(20)30073-6

Rajmil, L. (2020). Role of children in the transmission of the COVID-19 pandemic: A rapid scoping review. BMJ Paediatrics Open, 4(1), e000722. https://doi.org/10.1136/bmjpo-2020-000722

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507–514. https://doi.org/10.1007/BF02296192

Sim, M. R. (2020). The COVID-19 pandemic: Major risks to healthcare and other workers on the front line. Occupational and Environmental Medicine, 77(5), 281–282. https://doi.org/10.1136/oemed-2020-106567

Singer, M. E., Taub, I. B., & Kaelber, D. C. (2022). Risk of Myocarditis from COVID-19 infection in people under age 20: A population-based analysis. MedRxiv. https://doi.org/10.1101/2021.07.23.21260998

Snyder, R. D., Koehler, A. B., & Ord, J. K. (2002). Forecasting for inventory control with exponential smoothing. International Journal of Forecasting, 18(1), 5–18. https://doi.org/10.1016/S0169-2070(01)00109-1

Syed, F. U., Baloch, M., & Awan, M. H. (2021). Covid-19 and rural education, a perspective on global education system: AMSTAR tool as systematic literature review. IOSR Journal of Business and Management (IOSR-JBM, 23(8). https://doi.org/10.9790/487X-2308063048

Thibaut, F., & van Wijngaarden-Cremers, P. J. M. (2020). Women’s mental health in the time of Covid-19 pandemic. Frontiers in Global Women’s Health, 1. https://doi.org/10.3389/fgwh.2020.588372

Wang, C. (2008). Quantitative analysis on the Bullwhip effect in a supply chain using double moving average and double exponential smoothing forecasts. 2008 International Symposiums on Information Processing, 114–118. https://doi.org/10.1109/ISIP.2008.32

Weatherford, L. R., & Kimes, S. E. (2003). A comparison of forecasting methods for hotel revenue management. International Journal of Forecasting, 19(3), 401–415. https://doi.org/10.1016/S0169-2070(02)00011-0

Wenham, C., Smith, J., & Morgan, R. (2020). COVID-19: The gendered impacts of the outbreak. The Lancet, 395(10227), 846–848. https://doi.org/10.1016/S0140-6736(20)30526-2

Yilmaz, K. (2013). Comparison of quantitative and qualitative research traditions: Epistemological, theoretical, and methodological differences. European Journal of Education, 48(2), 311–325. https://doi.org/10.1111/ejed.12014

Zigron, A., Dror, A. A., Morozov, N. G., Shani, T., Haj Khalil, T., Eisenbach, N., Rayan, D., Daoud, A., Kablan, F., Marei, H., Sela, E., & Srouji, S. (2021). COVID-19 vaccine acceptance among dental professionals based on employment status during the Pandemic. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.618403




DOI: https://doi.org/10.21831/jpipfip.v16i1.52573

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Penelitian Ilmu Pendidikan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Supervised by:

Jurnal Penelitian Ilmu Pendidikan has been indexed by:

  

View My Stats