PRODUKSI PIGMEN DAN ASAM γ-AMINOBUTIRAT (GABA) OLEH Monascus purpureus PADA KONSENTRASI INOKULUM DAN WAKTU INKUBASI YANG BERBEDA

Maria Sarah Fadillah, Diponegoro University, Indonesia
Endang Kusdiyantini, Diponegoro University
Wijanarka Wijanarka, Diponegoro University

Abstract


Penelitian ini bertujuan untuk mengetahui produksi pigmen dan GABA oleh M. purpureus dengan konsentrasi inokulum dan waktu inkubasi yang berbeda. Fermentasi dilakukan menggunakan metode fermentasi cair dengan konsentrasi inokulum serta waktu inkubasi yang berbeda. Pengukuran pigmen intraselular dilakukan dengan mengekstraksi pelet sel menggunakan etanol 95%. Produksi GABA ditentukan menggunakan metode ninhidrin. Spektrofotometer digunakan untuk mengukur pigmen pada panjang gelombang 500, 470, dan 400 nm, sementara GABA pada panjang gelombang 401 nm. Penelitian menggunakan Rancangan Acak Lengkap (RAL) pola faktorial dengan dua faktor. Hasil penelitian menunjukkan rerata nilai pigmen merah, jingga dan kuning tertinggi pada pigmen ekstraseluler (P<0,05) terjadi pada perlakuan C3, sementara pigmen intraseluler (P<0,05) pada perlakuan C1, dengan perlakuan waktu inkubasi (P<0,05) W14. Interaksi antar kedua perlakuan (C*W) terjadi pada pigmen ekstraseluler merah dan jingga (P<0,05). Produksi GABA tidak berbeda secara signifikan pada pada perlakuan konsentrasi inokulum (P<0,05), tetapi berbeda secara signifikan pada perlakuan waktu inkubasi (P<0,05) dan perlakuan W14 menunjukkan produksi tertinggi (6,1085 mg/ml). Tidak adanya interaksi antardua perlakuan dalam produksi GABA (P>0,05).

PRODUCTION OF PIGMENTS AND γ-AMINOBUTYRIC ACID (GABA)
BY Monascus purpureus

This study was aimed at examining the production of pigments and GABA by M. purpureus in varied inoculum concentration and incubation time. The fermentation was carried out by submerged fermentation method with inoculum concentration and varied incubation time. Cell pellet was extracted using 95% ethanol for intracellular pigment measurement. GABA production was determined by ninhydrin method. Pigments were measured at 500, 470, and 400 nm wavelength by spectrophotometry, and GABA was measured at 401 nm wavelength. The experimental design was Completely Randomize Design (CRD) factorial with two factors. The higher colour value of extracellular (P<0,05) red, orange and yellow pigments showed at C3 while intracellular (P<0,05) showed at C1 with incubation time at W14. There are some interactions between two factors (C*W) for red and orange extracellular pigments (P<0,05). It was observed that inoculum concentrations have no significant difference (P>0,05) for GABA production. In other hand, there is significant difference for incubation time factors (P<0,05) with the highest production at W14 (6,1085 mg/ml). There is no interaction between two factors for GABA production (P>0,05).


Keywords


produksi pigmen, GABA, Monascus purpureus

Full Text:

PDF

References


Bali, A., & Gaur, P. (2011). A novel method for spectrophotometric determination of pregabalin in pure form and in capsules. Chemistry Central Journal, 5(1), 59-65.

Bühler, R. M. M., Dutra, A. C., Vendruscolo, F., Moritz, D. E., & Ninow, J. L. (2013). Monascus pigment production in bioreactor using a co-product of biodiesel as substrate. Ciȇcia e Tecno-logia de Alimentos, 33(1), 9-13.

Chakraborty, I., Redkar, P., Munjal, M., Kumar, S. R. S., & Rao, K. V. B. (2015). Isolation and Characterization of Pigment Producing Marine Actinobacteria from Mangrove Soil and Applications of Bio-Pigments. Der Pharmacia Lettre, 7(4), 93-100.

Chua, J. Y., Koh, M. K. P., & Liu, S. Q. (2019). Gamma-aminobutyric acid: a bioactive compound in foods. Dalam H. Feng, B. Nemzer, & J. W. DeVries, Sprouted grains: Nutritional value, production, and applications (pp. 25-54). USA: AACC International.

Dhakal, R., Bajpai, V. K., & Baek, K. H. (2012). Production GABA (γ-AminoButyric Acid) by microoganisms: A review. Brazilian Journal of Microbiology, 43(4), 1230-1241.

Dhaneliya, N. S. (2011). Biosynthesis of microbial pigments using co-culture of monascus purpureus and monascus ruber (Thesis tidak diterbitkan). Jawaharlal Nehru Krishi Visha Vidya-laya, Jabalpur.

Dikshit, R., & Tallapragada, P. (2011). Monascus purpureus: A Potential Source for Natural Pigment Production. Journal of Microbiology and Biotech-nology Research, 1(4), 164-174.

Hamdiyati, Y., Kusnadi, & Yuliani, L. A. (2015). Effect of monascus purpureus inoculum concentration on pigment production in jackfruit seed flour substrate. AIP Conference Proceedings, 1708(1), 1-5.

Kang, B., Zhang, X., Wu, Z., Wang Z., & Park, S. (2014). Production of citrinin-free monascus pigments by submerged culture at low pH. Enzyme and Microbial Technology, 55, 50-57.

Koli, S. H., Suryawanshi, R. K., Patil, C. D., & Patil, S. V. (2017). Chapter 9: Diversity and applications of versatile pigments produced by monascus sp. Dalam O. V. Singh, Biopigmentation and biotechnological implementations (pp. 193-209). USA: John Wiley & Sons.

Kumar, A., Vishwakarma, H. S., Singh, J., Dwivedi, S., & Kumar, M. (2015). Microbial pigments: Production and their applications in various industries. International Journal of Pharmaceutical, Chemical, and Biological Sciences, 5(1), 203-212.

Méndez, A., Pérez, C., Montañéz, J.C., Maertínez, G., & Aguilar, C.N. (2011). Red Pigment Production by Penicilliun purpurogenum GH2 is Influenced by pH and Temperature. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 12(12), 961-968.

Mukherjee, G., & Singh, S. K. (2011). Purification and characterization of a new red pigment from monascus purpureus in submerged fermentation. Process Biochemistry, 46, 188-192.

Musaalbakri, A. M., Ariff, A., Rosfarizan, M., & Ismail, A. K. (2005). Fermen-tation conditions affecting growth and red pigment production of monascus purpureus FTC 5391. Journal of Tropical Agricultural and Food Science, 33(2), 261-276.

Nugraha, S., Lunggani, A. T., & Kusdiyantini, E. (2017). Pigment production of monascus sp. isolated from angkak in Semarang Region, Central Java, Indonesia. Indonesian Food and Nutrition Progress, 14(1), 52-58.

Silbir, S., & Goksungur, Y. (2019). Natural Red Pigment Production by Monascus purpureus in Submerged Fermentation Systems Using a Food Industry Waste: Brewer’s Spent Grain. Foods, 8(161), 1-14.

Srianta, I., Zubaidah, E., Estiasih, T., Yamada, M., & Harijono. (2016). Comparison of monascus purpureus growth, pigment production and composition on different cereal substrates with solid state fermentation. Biocatalysis and Agricultural Biotechnology, 7, 181-186.

Tallapragada, P., & Dikshit, R. (2017). Microbial production of secondary metabolites as food ingredients. Dalam A. M. Holban & A. M. Grumezescu, Microbial production of food ingre-dients and additives (pp. 317-342). Cambridge: Elsevier.

Timotius, K. H. (2004). Produksi pigmen angkak oleh monascus. Jurnal Teknologi dan Industri Pangan, 15(1), 79-86.

Venkateswaran, V. (2010). Characterization of bioactive molecules from monascus purpureus fermented finger millet (Eleusine coracana) (Thesis tidak diterbitkan). University of Mysore, Mysore.

Wardani, M. T. (2017). Identifikasi molekuler isolat monascus sp. hasil isolasi angkak berdasarkan gen Internal Transcribed Spacer (ITS) dan pengukuran kandung-an pigmen (Skripsi tidak diterbitkan). Universitas Diponegoro, Semarang.




DOI: https://doi.org/10.21831/jps.v25i1.28208

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Penelitian Saintek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 p-ISSN: 1412-3991 || e-ISSN: 2528-7036

Indexed by:

     

View My Stats