Using network analysis for rapid, transparent, and rigorous thematic analysis: A case study of online distance learning
Russasmita Sri Padmi, SEAMEO QITEP in Mathematics, Yogyakarta, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Aguinis, H., & Solarino, A. M. (2019). Transparency and replicability in qualitative research: The case of interviews with elite informants. Strategic Management Journal, 40, 1291–1315. https://doi.org/10.1002/smj.3015
Attride-Stirling, J. (2001). Thematic networks: An analytic tool for qualitative research. Qualitative Research, 1(3), 385–405. https://doi.org/10.1177/146879410100100307
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008
Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188. https://doi.org/10.1109/TKDE.2007.190689
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa
Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and biological. (pp. 57–71). American Psychological Association. https://doi.org/10.1037/13620-004
Brennan, L., Cusack, T., Delahunt, E., Kuznesof, S., & Donnelly, S. (2019). Academics’ conceptualisations of the research-teaching nexus in a research-intensive Irish university: A dynamic framework for growth & development. Learning and Instruction, 60, 301–309. https://doi.org/10.1016/j.learninstruc.2017.10.005
Bringer, J. D., Johnston, L. H., & Brackenridge, C. H. (2006). Using computer-assisted qualitative data analysis software to develop a grounded theory project. Field Methods, 18(3), 245–266. https://doi.org/10.1177/1525822X06287602
Burgess-Allen, J., & Owen-Smith, V. (2010). Using mind mapping techniques for rapid qualitative data analysis in public participation processes. Health Expectations, 13(4), 406–415. https://doi.org/10.1111/j.1369-7625.2010.00594.x
Burns, S., & Schubotz, D. (2009). Demonstrating the merits of the peer research process: A Northern Ireland case study. Field Methods, 21(3), 309–326. https://doi.org/10.1177/1525822X09333514
Chandra, Y., & Shang, L. (2019). An overview of R and RQDA: An open-source CAQDAS platform. In Qualitative research using R: A systematic approach (pp. 47–51). Springer Singapore. https://doi.org/10.1007/978-981-13-3170-1_4
Chen, K., Zhang, Y., & Fu, X. (2019). International research collaboration: An emerging domain of innovation studies? Research Policy, 48(1), 149–168. https://doi.org/10.1016/j.respol.2018.08.005
Clarke, V., & Braun, V. (2013). Teaching thematic analysis: Overcoming challenges and developing strategies for effective learning. The Psychologist, 26(2), 120–123. https://uwe-repository.worktribe.com/output/937596/teaching-thematic-analysis-overcoming-challenges-and-developing-strategies-for-effective-learning
Drijvers, P., Grauwin, S., & Trouche, L. (2020). When bibliometrics met mathematics education research: the case of instrumental orchestration. ZDM. https://doi.org/10.1007/s11858-020-01169-3
Farrell, O., & Seery, A. (2019). “I am not simply learning and regurgitating information, I am also learning about myself”: learning portfolio practice and online distance students. Distance Education, 40(1), 76–97. https://doi.org/10.1080/01587919.2018.1553565
Fielding, N. G., & Lee, R. M. (2002). New patterns in the adoption and use of qualitative software. Field Methods, 14(2), 197–216. https://doi.org/10.1177/1525822X02014002005
Frandsen, T. (2017). Evolution of modularity literature: A 25-year bibliometric analysis. International Journal of Operations & Production Management, 37(6), 703–747. https://doi.org/10.1108/IJOPM-06-2015-0366
Galdas, P. (2017). Revisiting bias in qualitative research. International Journal of Qualitative Methods, 16(1), 160940691774899. https://doi.org/10.1177/1609406917748992
Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81(4), 046106. https://doi.org/10.1103/PhysRevE.81.046106
Hannes, K., & Macaitis, K. (2012). A move to more systematic and transparent approaches in qualitative evidence synthesis: Update on a review of published papers. Qualitative Research, 12(4), 402–442. https://doi.org/10.1177/1468794111432992
Harary, F. (2018). Graph theory. CRC Press.
Haskins Lisle, A., Merenda, C., & Gabbard, J. (2020). Using affinity diagramming to generate a codebook: a case study on young military veterans and community reintegration. Qualitative Research, 20(4), 396–413. https://doi.org/10.1177/1468794119851324
Holloway, I., & Todres, L. (2003). The status of method: Flexibility, consistency and coherence. Qualitative Research, 3(3), 345–357. https://doi.org/10.1177/1468794103033004
Jackson, K., & Bazeley, P. (2019). Qualitative data analysis with NVivo. SAGE.
Jackson, K. M., & Trochim, W. M. K. (2002). Concept mapping as an alternative approach for the analysis of open-ended survey responses. Organizational Research Methods, 5(4), 307–336. https://doi.org/10.1177/109442802237114
Jamieson, S. (2016). Analyse qualitative data. Education for Primary Care, 27(5), 398–402. https://doi.org/10.1080/14739879.2016.1217430
John, W. S., & Johnson, P. (2000). The pros and cons of data analysis software for qualitative research. Journal of Nursing Scholarship, 32(4), 393–397. https://doi.org/10.1111/j.1547-5069.2000.00393.x
Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25. https://doi.org/10.1002/asi.5090140103
Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical Teacher, 1–9. https://doi.org/10.1080/0142159X.2020.1755030
King, A. (2010). ‘Membership matters’: Applying membership categorisation analysis (MCA) to qualitative data using computer‐assisted qualitative data analysis (CAQDAS) software. International Journal of Social Research Methodology, 13(1), 1–16. https://doi.org/10.1080/13645570802576575
King, N., & Brooks, J. (2018). Thematic analysis in organisational research. In C. Cassell, A. L. Cunliffe, & G. Grandy (Eds.), The SAGE handbook of qualitative business and management research methods: Methods and challenges (pp. 219–236). SAGE Publications Ltd. https://doi.org/10.4135/9781526430236.n14
Kristanto, Y. D., & Santoso, E. B. (2020). Towards a mathematics textbook for supporting 21st century learning: The student perspective. Journal of Physics: Conference Series, 1657, 012037. https://doi.org/10.1088/1742-6596/1657/1/012037
Kristanto, Y. D. (2018). Technology-enhanced pre-instructional peer assessment: Exploring students’ perceptions in a Statistical Methods course. REiD (Research and Evaluation in Education), 4(2), 105–116. https://doi.org/10.21831/reid.v4i2.20951
Kristanto, Y. D., Utomo, B., & Sulistyani, N. (2020). Towards instructional design principles for online distance learning. https://doi.org/10.17605/OSF.IO/S2CN8
LeCompte, M. D., & Schensul, J. J. (1999). Analyzing & interpreting ethnographic data. AltaMira Press.
Lee, V., Coombe, L., Mahoney, R., Allen, C., & Robinson, P. (2018). Incorporating indigenous and non-indigenous worldviews through innovative text analysis: An evaluation of indigenous public health curricula. International Journal of Qualitative Methods, 17(1), 160940691881937. https://doi.org/10.1177/1609406918819377
Littenberg-Tobias, J., & Reich, J. (2020). Evaluating access, quality, and equity in online learning: A case study of a MOOC-based blended professional degree program. The Internet and Higher Education, 47, 100759. https://doi.org/10.1016/j.iheduc.2020.100759
Lund, K., Chen, B., & Grauwin, S. (2018). The potential of interdisciplinary in MOOC research. Proceedings of the Fifth Annual ACM Conference on Learning at Scale, 1–10. https://doi.org/10.1145/3231644.3231661
McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American Society for Information Science, 41(6), 433–443. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<433::AID-ASI11>3.0.CO;2-Q
Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E, 70(5), 056131. https://doi.org/10.1103/PhysRevE.70.056131
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103
Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic analysis: Striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16(1), 1–13. https://doi.org/10.1177/1609406917733847
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251. https://doi.org/10.1016/j.socnet.2010.03.006
Pokorny, J. J., Norman, A., Zanesco, A. P., Bauer-Wu, S., Sahdra, B. K., & Saron, C. D. (2018). Network analysis for the visualization and analysis of qualitative data. Psychological Methods, 23(1), 169–183. https://doi.org/10.1037/met0000129
Rose, J., & Johnson, C. W. (2020). Contextualizing reliability and validity in qualitative research: toward more rigorous and trustworthy qualitative social science in leisure research. Journal of Leisure Research, 51(4), 432–451. https://doi.org/10.1080/00222216.2020.1722042
Ryan, G. W., & Bernard, H. R. (2003). Techniques to identify themes. Field Methods, 15(1), 85–109. https://doi.org/10.1177/1525822X02239569
Salmona, M., Lieber, E., & Kaczynski, D. (2019). Qualitative and mixed methods data analysis using Dedoose: A practical approach for research across the social sciences. SAGE.
Scott, J., & Carrington, P. (2014). The SAGE handbook of social network analysis. SAGE Publications Ltd. https://doi.org/10.4135/9781446294413
Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269. https://doi.org/10.1002/asi.4630240406
Stopar, K., & Bartol, T. (2019). Digital competences, computer skills and information literacy in secondary education: mapping and visualization of trends and concepts. Scientometrics, 118(2), 479–498. https://doi.org/10.1007/s11192-018-2990-5
Thompson, R. (2002). Reporting the results of computer-assisted analysis of qualitative research data. Forum: Qualitative Social Research, 3(2), Art. 25. https://doi.org/10.17169/fqs-3.2.864
Tuval-Mashiach, R. (2017). Raising the curtain: The importance of transparency in qualitative research. Qualitative Psychology, 4(2), 126–138. https://doi.org/10.1037/qup0000062
Watkins, D. C. (2017). Rapid and rigorous qualitative data analysis. International Journal of Qualitative Methods, 16(1), 160940691771213. https://doi.org/10.1177/1609406917712131
Zhao, D., & Logan, E. (2002). Citation analysis using scientific publications on the web as data source: A case study in the XML research area. Scientometrics, 54(3), 449–472. https://doi.org/10.1023/A%3A1016090601710
DOI: https://doi.org/10.21831/pep.v24i2.33912
Refbacks
- Publications – Yosep Dwi Kristanto
- Dimensions – Using network analysis for rapid, transparent, and rigorous ...
- EdArXiv Preprints | Analisis Data Kualitatif: Penerapan Analisis ...
- PlumX - Using network analysis for rapid, transparent, and rigorous ...
- Publons – Using network analysis for rapid, transparent, and rigorous ...
- Kristanto: Using network analysis for rapid, transparent,... - Google Scholar
- Crossref Metadata Search
- Altmetric – Using network analysis for rapid, transparent, and rigorous ...
- Scilit | Article - Using network analysis for rapid, transparent, and ...
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Find Jurnal Penelitian dan Evaluasi Pendidikan on:
ISSN 2338-6061 (online) || ISSN 2685-7111 (print)
View Journal Penelitian dan Evaluasi Pendidikan Visitor Statistics