Connectivity Indices of Power Graphs over Dihedral Groups of a Certain Order

Authors

  • Arif Munandar Department of Mathematics, Faculty of Mathematics and Natural Sciences, Sunan Kalijaga State Islamic University, Yogyakarta, Indonesia

Keywords:

Connectivity Index , Power Graph , Dihedral Group

Abstract

The dihedral group is a mathematical structure generated by rotational and reflection symmetries. In this study, the representation of the group is described using a power graph, where all elements of the group are treated as vertices, and two distinct elements are considered adjacent when one is a power of the other. By analyzing the structural patterns of the resulting power graphs, various connectivity indices can be determined, particularly for dihedral groups whose orders are powers of a prime number. This research focuses on six specific connectivity indices: the first Zagreb index, the second Zagreb index, the Wiener index, the hyper-Wiener index, the Harary index, and the Szeged index.

References

Ali, F., Fatima, S., & Wang, W. (2022). On the power graphs of certain finite groups. Linear and Multilinear Algebra, 70(19), 3803–3817. https://doi.org/10.1080/03081087.2020.1856028

Assari, A., & Hosseinzadeh, N. (2013). Graph operations on Cayley graphs of semigroups. International Journal of Applied Mathematical Research, 3(1). https://doi.org/10.14419/ijamr.v3i1.1712

Cameron, P. J. (2010). The power graph of a finite group II. J. Group Theory, 13(6), 779–783.

Cameron, P. J., & Ghosh, S. (2011). The power graph of a finite group. Discrete Mathematics, 311(13), 1220–1222. https://doi.org/10.1016/j.disc.2010.02.011

Cameron, P. J., Guerra, H., & Jurina, Š. (2019). The power graph of a torsion-free group. Journal of Algebraic Combinatorics, 49(1), 83–98. https://doi.org/10.1007/s10801-018-0819-1

Cameron, P. J., & Jafari, S. H. (2020). On the Connectivity and Independence number of power graph of groups. Graphs Comb, 36(3), 895–904.

Chakrabarty, I., Ghosh, S., & Sen, M. K. (2009). Undirected power graph of semigroups. Semigroup Forum, 78(3), 410–426.

Das, K. C., & Gutman, I. (2009). Estimating the Szeged index. Applied Mathematics Letters, 22(11), 1680–1684. https://doi.org/10.1016/j.aml.2009.06.001

Das, K. C., Xu, K., & Nam, J. (2015). Zagreb indices of graphs. Frontiers of Mathematics in China, 10, 567–582.

Dobrynin, A., Entringer, R. C., & Gutman, I. (2001). Wiener Index of Trees: Theory and Applications. Acta Applicandae Mathematica, 66, 211–249.

https://api.semanticscholar.org/CorpusID:116000819

Febriantono, A., Munandar, A., & Ramadhan, M. R. (2024). Sifat-sifat Graf Irisan Pada Grup Dihedral. Riset Dan Aplikasi Matematika (JRAM), 8(1), 29–38. https://doi.org/https://doi.org/10.26740/jram.v8n1.p29-38

Gallian, J. (2021). Contemporary Abstract Algebra (J. A. Gallian (ed.)). Chapman and Hall/CRC. https://doi.org/10.1201/9781003142331

Kelarev, A. V., & Quinn, S. J. (2000). A combinatorial property and power graph of groups. Contrib. General Algebra, 12(58), 3–6.

Kelarev, A. V., & Quinn, S. J. (2002). Directed Graphs and Combinatorial Properties of Semigroups. Journal of Algebra, 251(1), 16–26. https://doi.org/10.1006/jabr.2001.9128

Kelarev, A. V., & Quinn, S. J. (2004). A combinatorial property and power graphs of semigroups. Commentationes Mathematicae Universitatis Carolinae, 45(1), 1–7.

Luo, Y., Hao, Y., & Clarke, G. T. (2011). On the Cayley graphs of completely simple semigroups. Semigroup Forum, 82(2), 288–295. https://doi.org/10.1007/s00233-010-9267-5

Ma, X., Wei, H., & Yang, L. (2014). The Coprime graph of a group. International Journal of Group Theory, 3(3), 13–23.

Munandar, A. (2022a). Graf Order Elemen: Representasi Baru Grup pada Graf. Konvergensi, 9(1), 1–7. https://doi.org/http://dx.doi.org/10.26555/konvergensi.v9i1.24201

Munandar, A. (2022b). Pengantar Matematika Diskrit dan Teori Graf. In Pengantar Matematika Diskrit dan Teori Graf. Deepulish.

N.Trianjstic, E. (1987). Mathematics and computational concepts in chemistry. In Journal of Molecular Structure: THEOCHEM (Vol. 152, Issues 3–4). https://doi.org/10.1016/0166-1280(87)80078-7

Nurhabibah, N., Syarifudin, A. G., Wardhana, I. G. A. W., & Aini, Q. (2021). The Intersection Graph of a Dihedral Group. EIGEN MATHEMATICS JOURNAL, 68–73. https://doi.org/10.29303/emj.v4i2.119

Wiener, H. (1947). Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69(1), 17–20. https://doi.org/10.1021/ja01193a005

Xu, K., & Das, K. C. (2011). On Harary index of graphs. Discrete Applied Mathematics, 159(15), 1631–1640. https://doi.org/10.1016/j.dam.2011.06.003

Yu, G., Ren, L., & Li, X. (2019). Wiener Index, Hyper-Wiener Index, Harary Index and Hamiltonicity Properties of graphs. Applied Mathematics-A Journal of Chinese Universities, 34(2), 162–172. https://doi.org/10.1007/s11766-019-3565-9

Zahidah, S., Mahanani, D. M., & Oktaviana, K. L. (2021). Connectivity Indices of Coprime Graph of Generalized Quarternion Group. Journal of the Indonesian Mathematical Society, 27(3), 285–296. https://doi.org/10.22342/jims.27.3.1043.285-296

Downloads

Published

2025-10-09

How to Cite

[1]
Munandar, A. 2025. Connectivity Indices of Power Graphs over Dihedral Groups of a Certain Order. Jurnal Sains Dasar. 14, 1 (Oct. 2025), 14–22.

Issue

Section

Articles