Analysis of Regional Clusters in Indonesia based on Factors Causing Stunting using Self Organizing Map Algorithm

Authors

  • Karyati Department of Mathematics Education, Mathematics and Natural Science Faculty of Universitas Negeri Yogyakarta, Yogyakarta Indonesia, Indonesia
  • Larrachita Rizka Bellapurani Department of Mathematics Education, Mathematics and Natural Science Faculty of Universitas Negeri Yogyakarta, Yogyakarta Indonesia, Indonesia

DOI:

https://doi.org/10.21831/jsd.v14i1.76468

Keywords:

Stunting, Clustering, Self Organizing Map

Abstract

This study aimed to classify regions in Indonesia based on the causes of stunting which are included in specific intervention and sensitive intervention framework, so that related parties can use them to address the biggest causal factors in each region. This research used the Self Organizing Map (SOM) method. The variables used were the percentage of children aged less than 6 months who were exclusively breastfed, the percentage of children aged 12-23 months who received complete basic immunization, the percentage of ever-married women aged 15-49 years whose last birth was facilitated by health workers and assisted by health workers, the percentage of households that have access to proper drinking water sources, and the percentage of households that have access to proper sanitation. The results obtained 6 clusters with their respective characteristics. Cluster 1 consists of 27 districts/cities, cluster 2 consists of 59 districts/cities, cluster 3 consists of 23 districts/cities, cluster 4 consists of 264 districts/cities, cluster 5 consists of 103 districts/cities and cluster 6 consists of 38 districts/cities.

Author Biography

Larrachita Rizka Bellapurani, Department of Mathematics Education, Mathematics and Natural Science Faculty of Universitas Negeri Yogyakarta, Yogyakarta Indonesia

Mathematics, Yogyakarta State University

References

Anggraeni, M. R., Yudatama, U., & Maimunah. (2022). Clustering

Prevalensi Stunting Balita Menggunakan Agglomerative Hierarchical Clustering. JURNAL MEDIA INFORMATIKA BUDIDARMA.

BPS. (2019). Profil Statistik Kesehatan 2019. Jakarta: Badan Pusat Statistik.

Firmansyah, D. N., Adinugroho, S., & Rahayudi, B. (2019). Pengelompokan Wilayah Berdasarkan Kesejahteraan Sosial Menggunakan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3rd ed.). Waltham: Morgan Kaufmann.

Kasih, P., & Riski, M. (2019). Pemodelan Self Organizing Maps (SOM) Untuk Pengelompokkan Pengaduan Masyarakat pada Radio X. Generation Journal .

Kemenkes. (2018). Buletin Jendela Data dan Informasi Kesehatan. Jakarta: Pusat Data Kementrian Kesehatan.

Kominfo. (2019). Bersama Perangi Stunting . Jakarta: Direktorat Jenderal Informasi dan Komunikasi Publik Kementrian Komunikasi dan Informatika .

Pohan, H., Zarlis, M., Irawan, E., Okprana, H., & Pranayama, Y. P. (2021). Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia. JUKI : Jurnal Komputer dan Informatika.

Suwirmayanti, N. L. (2020). Penerapan Teknik Clustering untuk Pengelompokkan Konsentrasi Mahasiswa dengan Metode Self Organizing Map. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 11-20.

TNP2K. (2017). 100 Kabupaten/Kota Prioritas untuk Intervensi Anak Kerdil (Stunting). Jakarta: Tim Nasional Percepatan Penanggulangan Kemiskinan.

Windarto, A. P., Nasution, D., Wanto, A., Tambunan, F., Hasibuan, M. S., Siregar, M. N., . . . Nofriansyah, D. (2020). Jaringan Saraf Tiruan : Algoritma Prediksi & Implementasi. (J. Simamarta, Ed.) Yayasan Kita Menulis.

Downloads

Published

2025-12-17

How to Cite

[1]
Karyati and Bellapurani, L.R. 2025. Analysis of Regional Clusters in Indonesia based on Factors Causing Stunting using Self Organizing Map Algorithm. Jurnal Sains Dasar. 14, 1 (Dec. 2025), 69–79. DOI:https://doi.org/10.21831/jsd.v14i1.76468.

Issue

Section

Articles

Citation Check