The Calcination Effect on the Crystallinity, Nitrogen Content, and Pore Structure of Nitrogen-Doped Titanium Dioxide

Cahyorini Kusumawardani, Departement of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Indonesia

Abstract


Mesoporous nitrogen-doped titanium dioxide nanomaterials have been synthesized through a one-step sol gel process with dodecylamine as the pore template as well as the nitrogen source. The calcination process plays an important role in the crystallization process, determination of doped nitrogen, and pore formation. The effect of calcination temperature on the material structure was studied by calcination treatment of the as-synthesized material at several temperature variations. The resulting materials were characterized using FTIR, XRD, XPS, and N2 gassorption analysis.  The results showed that the anatase TiO2 crystal structure began to form with calcination at 400 °C. The higher calcination temperature tends to cause the transformation of anatase crystal phase into rutile. The higher calcination temperature also affects the doped nitrogen content, where the pore-templating molecules begin to disappear at a calcination temperature and leaving a number of dopants on TiO2. All dopants are released from TiO2 at a calcination temperature of 600 °C. The optimum calcination temperature to form mesoporous structure was 450 °C, and the sintering occurs at a calcination temperature higher than optimum temperature indicated by the collapse of the pore structure.

Keywords


calcination, sintering effect, nitrogen-doped titanium dioxide

Full Text:

PDF

References


Kusumawardani C., Suwardi, Kartini I. and Narsito. (2012), Synthesis and Characterization of N-doped TiO2 Photocatalyst, Asian J. Chem., 24, 1, , 255–256

Foo C., Li Y., Lebedev K., Chen T., Day S., Tang C. & Tsang E. (2021), Characterisation of oxygen defects and nitrogen impurities in TiO2 photocatalysts using variable-temperature X-ray powder diffraction. Nat Commun., 12, 661. https://doi.org/10.1038/s41467-021-20977-z

Ibrahim N.S., Leaw W.L., Mohamad D., Alias S.H., Nur H. (2020), A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production, International Journal of Hydrogen Energy, 45, 53, 28553-28565. https://doi.org/10.1016/j.ijhydene.2020.07.233

Basavarajappa P.S, Patil S.B., Ganganagappa N., Keddy K.R., Raghu A.V., Reddy C.V. (2020), Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, International Journal of Hydrogen Energy, 45, 13, 7764-7778. https://doi.org/10.1016/j.ijhydene.2019.07.241

Choi W., Termin A. and Hoffmann M.R. (1994), Effects of metal-ion dopants on the photocatalytic activity of quantum-sized TiO2 particles, Angew. Chem. 106, 1148–1149

Kusumawardani, C. (2021), The Pore Formation anda Doping Process on the Synthesis of Nitrogen-doped Titania Through Sol-gel Method, Rasayan. J. Chem., 15, 1, 549-556. http://dx.doi.org/10.31788/RJC.2022.1516674

Kim T.H., Go G-M., Cho H-B., Song Y., Li C-G., Choa Y-H. (2018), A Novel Synthetic Method for N Doped TiO2 Nanoparticles Through Plasma-Assisted Electrolysis and Photocatalytic Activity in the Visible Region, Front. Chem., 6, 458. https://doi.org/10.3389/fchem.2018.00458

Shehata M.A., Shama S.A., Mahmoud S.A., Doheim M.M. (2016), Preparation and Characterization of Various Interstitial N-Doped TiO2 Catalysts from Different Nitrogen Dopants for the Treatment of Polluted Water, Chemistry and Materials Research, 8, 6, 45-55.

Khan T.T., Bari R.,Kang H-J., Lee T-G., Park J-W., Hwang H.J., Hossain S.M., Mun J.S., Suzuki N., Fujishima A., Kim J-H., Shon H.K. and Jun Y.S. (2021), Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx, Catalysts, 11, 1, 109. https://doi.org/10.3390/catal11010109

Chen X. and Burda C. (2004), Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles, J. Phys. Chem. B, 108 (40), 15446-15449

Irie H., Watanabe Y and Hashimoto K. (2003), Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, J. Phys. Chem. B, 107 (23), 5483-5486

Nosaka, Y. Matsushita, M. Nishino, J. Nosaka, A.Y., (2019), Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds, Sci. Tech. Adv. Mater., 6, 143-148

Natarajan T.S., Mozhiarasi V. and Tayade R.J. (2021), Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications, Photochem, 1, 3, 371-410. https://doi.org/10.3390/photochem1030024

Asahi R., Morikawa T., Ohwaki T., Aoki K. And Taga Y., 2001, Visible-Light Photocatalysis in Nitrogen-Doped Titania, Science, 293, 269-271

Bakar S.A. and Ribeiro C. (2016), Nitrogen-doped titanium dioxide: An overview of material design and dimensionality effect over modern applications, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 27, 1-29. https://doi.org/10.1016/j.jphotochemrev.2016.05.001

Nakamura R., Tanaka T., Nakato Y. (2004), Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes, J. Phys. Chem. B, 108 (30), 10617-10620

Diwald O., Thompson T.L., Goralski E. G., Walck S. D. & Yates J.T. Jr. (2004), The effect of nitrogen ion implantation of the photoactivity of TiO2 rutile single crystals. J. Phys. Chem. B, 108, 52-57

Cheng X., Yu X., Xing Z., Yang L. (2016), Synthesis and characterization of N-doped TiO2 and its enhanced visible-light photocatalytic activity, Arabian J. Chem., 9, 2, S1706-S1711. https://doi.org/10.1016/j.arabjc.2012.04.052

Qiu and Burda, (2007), Chemically Synthsized Nitrogen-doped Metal Oxide nanoparticles, Chem. Phys, 339, 1 – 10

Sakthivel S., Janczarek M., Kisch H. (2004), Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B, 108, 19384-19387

Tachikawa T., Takai Y., Tojo S., Fujitsuka M., Irie H., Hashimoto K., Majima T. (2006) Visible Light-Induced Degradation of Ethylene Glycol on Nitrogen-Doped TiO2 Powders, J. Phys. Chem. B, 110, 13158-13165

Valentin C.D., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M.C. and Giamello E., (2005), N-doped TiO2: Theory and Experiment, Chem. Phys., 339, 44-56

Kusumawardani, C., Sugiyarto K.H., Prodjosantoso A.K. (2021), The influence of ph on the nitrogen-doped tio2 structure and its photocatalytic activity on methylene blue degradation, Molekul, 16, 3, 270-279. http://dx.doi.org/10.20884/1.jm.2021.16.3.804

Gonzales R.J. (1996), Raman, Infra Red, X-Ray and EELS Studies of Nanophase Titania, Dissertation, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg

Sankapal B.R., Lux-Steiner,M.C. and Ennaoui, A. (2005), Synthesis and Characterization of Anatase TiO2 Thin Films, Appl. Surf. Sci., 239, 165-170

Giles E. Eperon, Severin N. Habisreutinger, Tomas Leijtens, Bardo J. Bruijnaers, Jacobus J. van Franeker, Dane W. deQuilettes, Sandeep Pathak, Rebecca J. Sutton, Giulia Grancini, David S. Ginger, Rene A. J. Janssen, Annamaria Petrozza, and Henry J. Snaith, The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication, ACS Nano, 9, 9, (2015), 9380–9393, https://doi.org/10.1021/acsnano.5b03626

Sarah Wozny, Mengjin Yang, Alexandre M. Nardes, Candy C. Mercado, Suzanne Ferrere, Matthew O. Reese, Weilie Zhou, and Kai Zhu, Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells, Chemistry Materials, 27, 13, (2015), 4814–4820, https://doi.org/10.1021/acs.chemmater.5b01691

Vitiello R., Macak J., Ghicov A., Tsuchiya H., Dick L. and Schmuki P., (2016), N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun., 8, 544-548

Kusumawardani C. andIkhsan J. (2022), The Synthesis of Methylammonium Lead Iodide on Mesopore TiO2 Thin Film Applying Ostwald Ripening Process Under Ambient Condition, Rasayan Journal of Chemistry, 15, 3, 1678–1685, https://doi.org/10.31788/RJC.2022.1536890

Vinodgopal K., Hua X., Dahlgren R.B., Lappin A.G., Patterson L.K. and Kamat P.V. (2020), Photochemistry of Ru(bpy)2(dcpy)2+ on Al2O3 and TiO2 surface. An Insight into the Mechanism of photosensitization, J. Phys. Chem., 99, 10883-10889

Burda C., Samia A.C.S., Hathcock D., Huang H. and Yang S. (2004), N-Doped TiO2 Nanotube With Visible Light Activity, J. Am. Chem. Soc., 124(42), 12400-12401

Lindgren T., Mwabora J.M., Avendano E., Jonsson J., Hoel A., Granqvist C., Lindquist S. (2003), Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering, J. Phys. Chem. B, 107 (24), 5709-5716

Gopinath C.S. (2006), Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles, J. Phys. Chem. B, 110, 7079-7082




DOI: https://doi.org/10.21831/jsd.v11i2.60004

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Cahyorini Kusumawardani

==========================================================================================================
Printed ISSN (p-ISSN): 2085-9872
Online ISSN (e-ISSN): 2443-1273

==========================================================================================================
Indexer :
     ==========================================================================================================
 
 Creative Commons License
 
 
 Free counters!

 

View My Stats

==========================================================================================================