Bibliometric analysis of deep learning research trends as a pedagogical approach to science learning in elementary schools (2021–2025)
DOI:
https://doi.org/10.21831/jpip.v18i2.94621Keywords:
Deep Learning, bibliometrics, science learning, elementary school, digital pedagogyAbstract
The dynamics of education in the 21st century demand a pedagogical transformation towards holistic competency development. This study aims to analyze the research trend of Deep Learning as a pedagogical approach to social studies learning in elementary schools. Using bibliometric methods, this study mapped the intellectual structure of 574 scientific articles (2021–2025) sourced from Google Scholar through the Publish or Perish software and VOSviewer. The results of the network visualization analysis identified five main clusters that showed a shift in focus from the technical aspects of computing towards the integration of intelligent technologies in classroom practice. The publication trend jumped significantly after 2023, with the latest topics focusing on critical thinking, creativity, and artificial intelligence (AI) literacy. Density analysis reveals research gaps: the literature is dominated by science and STEM content, with little exploration of the social dimension (social studies) or local wisdom. This research concludes that Deep Learning has developed into a technological entity that supports the achievement of the 8 Dimensions of the Graduate Profile through the principles of mindful, meaningful, and joyful learning. The practical implications provide guidance for educators to integrate technology scaffolding with in-depth inquiry, shaping adaptive lifelong learners in the era of disruption.
References
Alfaisal, R., Hashim, H., & Azizan, U. H. (2024). Metaverse system adoption in education: A systematic literature review. In Journal of Computers in Education, 11(2), 297–323. https://doi.org/10.1007/s40692-023-00293-7
Barua, P. D., Vicnesh, J., Gururajan, R., Oh, S. L., Palmer, E., Azizan, M. M., Kadri, N. A., & Acharya, U. R. (2022). Artificial intelligence enabled personalised assistive tools to enhance education of children with neurodevelopmental disorders: A review. In International Journal of Environmental Research and Public Health, 19(3), 1192. https://doi.org/10.3390/ijerph19031192
Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., & Paskevicius, M. (2020). A global outlook to the interruption of education due to COVID-19 pandemic: Navigating in a time of uncertainty and crisis. In Asian Journal of Distance Education,15(1), 1–126. https://doi.org/10.5281/zenodo.3878572
Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: a systematic literature review. In International Journal of Educational Technology in Higher Education, 20(1), 29. https://doi.org/10.1186/s40594-023-00418-7
Crompton, H., Bernacki, M., & Greene, J. A. (2020). Psychological foundations of emerging technologies for teaching and learning in higher education. In Current Opinion in Psychology, 36, 101–105. https://doi.org/10.1016/j.copsyc.2020.04.011
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. In Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
Fullan, M., Quinn, J., & McEachen, J. (2018). Deep Learning: Engage the World, Change the World .Corwin Press.
Greenhalgh, T., Knight, M., A’Court, C., Buxton, M., & Husain, L. (2020). Management of post-acute covid-19 in primary care. In BMJ, 370, 3026. https://doi.org/10.1136/bmj.m3026
Huda, S. A. ., Hamdi, H., Nurhuda, A., Lathif, N. ., & Mahbubi, M. . (2025). Diskursus Deep Learning Curriculum dan Pengembangan Isunya di Masa Depan melalui Tinjauan Analisis Bibliometrik. Al Washliyah : Jurnal Penelitian Sosial Dan Humaniora, 3(1), 1–17. https://doi.org/10.70943/jsh.v3i1.75
Indarta, Y., Jalinus, N., Waskito, W., Samala, A. D., Riyanda, A. R., & Adi, N. H. (2022). Relevansi Kurikulum Merdeka Belajar dengan Model Pembelajaran Abad 21 dalam Perkembangan Era Society 5.0. In Edukatif: Jurnal Ilmu Pendidikan 4(2), 3011–3024. https://doi.org/10.31004/edukatif.v4i2.2589
Kemendikbudristek. (2022). Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Nomor 008/H/KR/2022 tentang Capaian Pembelajaran. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi Republik Indonesia.
Kleven, H., Landais, C., & Søgaard, J. E. (2019). Children and gender inequality: Evidence from Denmark. In American Economic Journal: Applied Economics, 11(4), 181–209. https://doi.org/10.1257/app.20180009
Mandiudza, L. (2013). Child Friendly Schools. Greener Journal of Educational Research, 3(6), 283–288. https://doi.org/10.15580/GJER.2013.6.011813393
Marín-Marín, J. A., Moreno-Guerrero, A. J., Dúo-Terrón, P., & López-Belmonte, J. (2021). STEAM in education: A bibliometric analysis of performance and co-words in Web of Science . In International Journal of STEM Education, 8(1), 41. https://doi.org/10.1186/s40594-021-00296-x
McPhail, G. (2021). The search for deep learning: A curriculum coherence model . In Journal of Curriculum Studies, 53(4), 420–434. https://doi.org/10.1080/00220272.2020.1748231
Nasution, S. W. (2022). Asesmen Kurikulum Merdeka Belajar di Sekolah Dasar . In Jurnal Basicedu, 6(1), 135–142. https://doi.org/10.31004/basicedu.v6i1.1852
OECD. (2023). PISA 2022 Results (Volume II): Learning During – and From – Disruption . OECD Publishing . https://doi.org/10.1787/a97db61c-en
Rahayu, R., Rosita, R., Rahayuningsih, Y. S., Hernawan, A. H., & Prihantini, P. (2022). Implementasi Kurikulum Merdeka di Sekolah Penggerak . In Jurnal Basicedu , 6(4), 6313–6319). https://doi.org/10.31004/basicedu.v6i4.3237
Taj, I., & Zaman, N. (2022). Towards industrial revolution 5.0 and explainable artificial intelligence: Challenges and opportunities . In International Journal of Computing and Digital Systems, 12(1), 295–320. https://doi.org/10.12785/ijcds/120128
Tomlinson, C. A. (2017). How to Differentiate Instruction in Academically Diverse Classrooms (3rd ed.). ASCD .
Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. In Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
Wijaya, A. A., Haryati, T., & Wuryandini, E. (2025). Implementasi Pendekatan Deep Learning dalam Peningkatan Kualitas Pembelajaran di SDN 1 Wulung, Randublatung, Blora. In Indonesian Research Journal on Education, 5(1), 451–457. https://doi.org/10.31004/irje.v5i1.1950
Wu, R., & Yu, Z. (2024). Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. In British Journal of Educational Technology, 55(1), 10–33. https://doi.org/10.1111/bjet.13334
Xu, W., & Ouyang, F. (2022). The application of AI technologies in STEM education: A systematic review from 2011 to 2021. In International Journal of STEM Education, 9, 59. https://doi.org/10.1186/s40594-022-00377-5
Yim, I., & Su, J. (2025). Artificial intelligence (AI) learning tools in K-12 education: A scoping review. In Journal of Computers in Education, 12(1), 93–131. https://doi.org/10.1007/s40692-023-00304-9
Yu, D., Kou, G., Xu, Z., & Shi, S. (2021). Analysis of collaboration evolution in AHP research: 1982–2018. In International Journal of Information Technology & Decision Making 20(1), 7–36. https://doi.org/10.1142/S0219622020500406
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., & Spector, J. M. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. In Complexity 2021,1–18. https://doi.org/10.1155/2021/8812542
Zhang, P., & Tur, G. (2024). A systematic review of ChatGPT use in K-12 education. In European Journal of Education, 59(2), 12599. https://doi.org/10.1111/ejed.12599
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Mega Setya Handayani, Mawaddah Warohmah, Umi Mahmudah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




