Niknik Mediyawati, Universitas Multimedia Nusantara, Indonesia
Julio Cristian Young, Universitas Multimedia Nusantara, Indonesia
Samiaji Bintang Nusantara, Universitas Multimedia Nusantara, Indonesia


The problem of Indonesian language errors among students is of particular observation. This problem becomes an important concern for students majoring in journalism because one day the graduates will become journalists. A language error filtering application has been developed that can be used quickly and accurately in journalists’ work. This application, which involves statistical analysis, computational language, and artificial intelligence, is named U-Tapis. This study was aimed at finding out the feasibility and effectiveness measures of the U-Tapis model by focusing on the language of students’ journalistic works such as opinions, news items, and news articles. The study involved 30 students majoring in Journalism, a private university in Jakarta, Indonesia. It was found that the students’ error rate decreased after the use of the model. It can be concluded that, in addition to eligibility which reaches 92.31%, the U-Tapis application can help effectively increase students’ proficiency in the use of the Indonesian language.


ommunication; Indonesian; journalism; language filter application.

Full Text:



Aditya, R. (2016, 28 Februari). Teknologi robot untuk memburu berita. [Robot technology for news hunting]. Beritagar.id. https://beritagar.id/artikel/sains-tekno/teknologi-robot-yang-memudahkan- kerja-pemburu-berita.

Alexa.com. (2020). Top sites in Indonesia. https://www.alexa.com/topsites/countries/ID.

Alpaydin, E. (2010). Introduction to machine learning (2nd ed). Cambride, Massachusetts: MIT Press. https://kkpatel7.files.wordpress.com/2015/04/alppaydin_machinelearning_2010.pdf.

Ambarita, D. (2020, Mach). Kegiatan penyuntingan di Tribunnews.com (Interview at Kompas Gramedia).

Appelman, A., & Schmierbach, M. (2018). Make no mistake? Exploring cognitive and perceptual effects of grammatical errors in news articles. Journalism and Mass Communication Quarterly, 95(4), 930–947. https://doi.org/10.1177/1077699017736040.

Appelman, A., & Hettinga, K. (2020). Correcting online content: The influence of news outlet reputation. Journalism Practice, 0(0), 1–18. https://doi.org/10.1080/17512786.2020.1784776.

Cambray, A., & Podsadowski, N. (2019). Bidirectional recurrent models for offensive tweet classification. arxiv.org. https://arxiv.org/pdf/1903.08808v1.pdf.

Carlson, M. (2015). The robotic reporter. Digital Journalism, 3(3), 416-431. https://doi.org/10.1080/21670811.2014.976412.

Clerwall, C. (2014). Enter the robot journalist: Users’ perceptions of automated content. Journalism Practice, 8(5), 519-531. https://doi.org/10.1080/17512786.2014.883116.

Corten, R. (2014). Computational approaches to studying the co-evolution of networks and Behavior in Social Dilemmas. West Sussex, UK: John Wiley & Sons.

Dewan Pers. (2018, 25 September). Progam pendataan menjadi ujung tombak. [The data collection program is the spearhead]. https://dewanpers.or.id/berita/detail/1066/Progam-Pendataan-Menjadi-Ujung-Tombak.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007.

Garbe, W. (2019). Wolf Garbe. Github. https://github.com/wolfgarbe/SymSpell.

Guo, C., Liu, X., Cai, E., Chen, Y. V., Qian, Z. C., & Li, R. (2019). Topic ink: Visualizing disaster-related textual data using LDA topic modeling: Vast challenge 2019: Honorable mention for clear articulation of methodology. In R. Chang, D. A. Keim, & R. Maciejewski (Eds.). IEEE Conference on Visual Analytics Science and Technology (VAST). Vancouver, BC: IEEE, pp. 124-125. https://binxia.github.io/publication/2018-SEKE-liu-noisy.pdf.

Hadiyat, Y. D. (2019). Clickbait di media online Indonesia. [Clickbait in Indonesian online media]. Jurnal Pekommas, 4(1), 1-10. https://doi.org/10.30818/jpkm.2019.2040101.

Hládek, D., Staš, J., & Pleva, M. (2020) Survey of automatic spelling correction. Electronics, 9(10), 1-29. https://doi.org/10.3390/electronics9101670.

Kovach, B., & Rosenstiel, T. (2001). The elements of journalism: What newspeople should know and the public should expect. New York, NY: Crown Publishers.

Kovach, B., & Rosenstiel, T. (2010). Blur: How to know what’s true in the age of information overload. New York, NY: Bloomsbury.

Lai, H. –L., Chui, K., Sah, W. –H., Chung, S. –F., Liu, C. –L. (2018). Language communities, corpora, and cognition. In S.-H. Chen (Ed.). Big data in computational social science and humanities. Taipei: Springer Nature, pp. 195-206. https://doi.org/10.1007/978-3-319-95465-3_9.

Law RI 2009 No. 24. Bendera, Bahasa, dan Lambang Negara serta Lagu Kebangsaan. [Flag, Language, and National Emblem and National Anthem]. http://badanbahasa.kemdikbud.go.id/lamanbahasa/sites/default/files/UU_2009_24.pdf.

Lindén, C. -G (2017). Algorithms for journalism: The future of news work. The Journal of Media Innovations, 4(1), 60-76. https://doi.org/10.5617/jmi.v4i1.2420.

Ljunglöf, P., & Kjellberg, J. M. (2018, 7-9 November). Interactive correction of speech recognition errors: Implementation and evaluation for English and Swedish. Paper presented at The 7th Swedish Language Technology Conference, Stockholm. https://gup.ub.gu.se/file/207625.

Maier, S. R. (2005). Accuracy matters: A cross-market assessment of newspaper error and credibility. Journalism & Mass Communication Quarterly, 82(3), 533–551. https://doi.org/10.1177/107769900508200304.

Maier, S. R. (2007). Setting the record straight: When the press errs, do corrections follow? Journalism Practice, 1(1), 33–43. https://doi.org/10.1080/17512780601078845.

Muskania, R. T., & Wilujeng, I. (2017). Pengembangan perangkat pembelajaran project-based learning untuk membekali foundational knowledge dan meningkatkan scientific literacy. [Developing a project-based science learning kit to provide foundational knowledge and improve scientific literacy]. Cakrawala Pendidikan, 36(1), 34-43. https://doi.org/10.21831/cp.v36i1.8830.

Nemeth, N., & Sanders, C. (2009). Number of corrections increase at two national newspapers. Newspaper Research Journal, 30(3), 90–104. https://doi.org/10.1177/073953290903000307.

Peraturan Dewan Pers No. 01/Peraturan-DP/X/2018. Standar Kompetensi Wartawan. [Journalist Competency Standards]. https://dewanpers.or.id/assets/ebook/buku/1901191536_Buku_2018_SKW.pdf.

Permendikbud RI 2016 No. 70. Standar Kemahiran Berbahasa Indonesia. [Indonesian Language Proficiency Standards.]. https://jdih.kemdikbud.go.id/arsip/Permendikbud_Tahun2016_Nomor070.pdf.

Perpres RI 2019 No. 63. Penggunaan Bahasa Indonesia. [The use of Indonesian]. https://jdih.setkab.go.id/PUUdoc/175936/Perpres_Nomor_63_Tahun_2019.pdf.

Peterson, J. L. (1980). Computer programs for detecting and correcting spelling errors. Communications of the ACM, 23(12), 676–687. https://doi.org/10.1145/359038.359041.

Qumillaila, Q., Susanti, B. H., & Zulfiani. (2017). Pengembangan augmented reality versi android sebagai media pembelajaran sistem ekskresi manusia. [Developing android augmented reality as a learning media of human excretory system]. Cakrawala Pendidikan, 36(1), 57-69. https://doi.org/10.21831/cp.v36i1.9786.

Sarkar, D. (2019). Text analytics with python: A practitioner’s guide to natural language processing. Bangalore, India: Apress.

Singh, S., & Singh, S. (2020). Systematic review of spell-checkers for highly inflectional languages. Artificial Intelligence Review, 53, 4051–4092. https://doi.org/10.1007/s10462-019-09787-4.

Thurman, N., Lewis, S. C., & Kunert, J. (2019). Algorithms, automation, and news. Digital Journalism, 7(8), 980-992. https://doi.org/10.1080/21670811.2019.1685395.

Wahono, R. S. (2006, 21 June). Aspek dan kriteria penilaian media pembelajaran. [Aspects and criteria for assessing instructional media]. RomiSatriaWahono.net. https://romisatriawahono.net/2006/06/21/aspek-dan-kriteria-penilaian-media-pembelajaran/.

Zukarnain, N., Abbas, B. S., Wayan, S., Trisetyarso, A., & Kang, C. H. (2019, 19-20 August). Spelling checker algorithm methods for many languages. Paper presented in the International Conference on Information Management and Technology (ICIMTech), Jakarta/Bali, Indonesia. https://doi.org/10.1109/ICIMTech.2019.8843801.

DOI: https://doi.org/10.21831/cp.v40i2.34546


  • There are currently no refbacks.


Social Media:



 Creative Commons License
Jurnal Cakrawala Pendidikan by Lembaga Pengembangan dan Penjaminan Mutu Pendidikan UNY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/cp/index.

View Our Stats

Flag Counter