A TEST OF ANALYTICAL THINKING AND CHEMICAL REPRESENTATION ABILITY ON 'RATE OF REACTION' TOPIC
Downloads
Abdurrahman, Liliasari, Rusli, A., & Waldrip, B. (2011). Implementasi pembelajaran berbasis multi representasi untuk peningkatan penguasaan konsep fisika kuantum. Cakrawala Pendidikan, 30(1), 30-45. doi:10.21831/cp.v1i1.4189.
Adedoyin, O. O., & Mokobi, T. (2013). Using IRT psychometric analysis in examining the quality of junior certificate mathematics multiple choice examination test items. International Journal of Asian Social Science, 3(4), 992-1011.
Anderson, L. W., &Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing. New York, NY: Longman.
Areesophonpichet, S. (2013). A development of analytical thinking skills of graduate students. The Asian Conference on Education (pp. 1-5). Osaka, Japan: The International Academic Forum.
Beavers, A. S., Lounsbury, J. W., Richard, J. K., Huck, S. W., Skolits, G. J., & Esquivel, S. L. (2013). Practical considerations for using exploratory factor analysis in educational research. Practical Assessment, Research & Evaluation, 18(6), 1-13.
Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Dordrecht: Netherlands.
Bucat, B., &Mocerino, M. (2009). Learning at the sub-micro level: structural representations. In Gilbert, J. K., &Treagust, D. F. (Eds), Multiple representations in chemical education. (pp.1-8). Dordrecht: Springer.
Brown, R. L., Obasi, C. N., & Barret, B. P. (2016). Rasch analysis of the WURSS-21 dimensional validation and assessment of invariance. J. Lung. Pulm. Respir. Res., 3(2), 1-16. doi:10.15406/jlprr.2016.03.00076.
í‡akmakí§Ä±, G., Leach, J., & Donnelly, J. (2006). Students' ideas about reaction rate and its relationship with concentration or pressure. International Journal of Science Education, 28(15), 1795-1815. doi:10.1080/09500690600823490.
Calik, M., Kolomuc¸ A., & Karagolge, Z. (2010). The effect of conceptual change pedagogy on students' conceptions of rate of reaction. Journal of Science Education and Technology, 19(5), 422-433. doi:10.1007/s10956-010-9208-9.
Chandrasegaran, A. L., Treagust, D. F., &Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students' ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8, 293-307. doi:10.1039/b7rp90006f.
Dalgety, J., Coll, R. K., & Jones, A. (2003). Development of chemistry attitudes and experiences questionnaire (CAEQ). Journal of Research in Science Teaching, 40(7), 649-668. doi: 10.1002/tea.10103.
Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: a useful tool for teaching and learning chemical equations and stoichiometry. Chem. Educ. Res. Pract., 11(3), 154-164.doi: 10.1039/C005464J.
Devetak, I. E. (2009). Comparing Slovenian year 8 and year 9 elementary school pupils' knowledge of electrolyte chemistry and their intrinsic motivation. Chem. Educ. Res. Pract., 10(1), 281-290.doi: 10.1039/B920833J.
El-Korashy, A. F. (1995). Applying the rasch model to the selection of items for a mental ability test . Educational and Psychological Mesurement, 55(5), 753-763. doi:10.1177%2F0013164495055005006.
George, D., & Mallery, P. (2003). SPSS for windows step by step: A simple guide and reference. 11.0 update (4th Ed.). Boston, MA: Allyn & Bacon.
Gilbert, J. K., &Treagust, D. F. (2009). Macro, submicro and symbolic representations and the relationships between them: Key models in chemical education. In J. K. Gilbert & D. F. Treagust (Eds), Multiple representations in chemical education. (pp.1-8). Dordrecht: Springer.
Guler, N., Uyanik, G. K., & Teker, G. T. (2014). Comparison of classical test theory and item response theory in terms of item parameters. European Journal of Research on Education, 2(1), 1-6.
Greiff, S., Wí¼stenberg, S., Molnár, G., Fischer, A., Funke, J., & Csapó, B. (2013). Complex problem solving in educational contexts"”something beyond g: Concept, assessment, measurement invariance, and construct validity. Journal of Educational Psychology, 18(1), 1-15. doi:10.1037/a0031856.
Hafsah, T., Hashim, R., Zurida, I., Jusoff, K., & Yin, K. Y. (2014). The influence of students' concept of mole, problem representation ability and mathematical ability on stoichiometry problem solving. Scottish Journal of Arts, Social Sciences and Scientific Studies, 21(1), 3-21.
Hambleton, R. K., &Swaminathan, H. (1985). Item response theory principles and applications. Boston, MA: Kluwer Nijhoff Publishing.
Hambleton, R. K., Swaminathan, H., &Rogers, H. J. (1991). Fundamental of item response theory. Los Angeles: Sage Publication, Inc.
Johnstone, A. (2000). Chemical education research: Where from here? Chemistry Education, 4(1), 34-48.
Kaya, E. &Geban, O. (2012). Facilitating conceptual change in rate of reaction concepts using conceptual change oriented instruction. Education and Science, 37(163), 216-225.
Kellya, R., & Hansenb, S. (2017). Exploring the design and use of molecular animations that conflict for understanding chemical reactions. ACS symposium on Chemical Education, 40(4), 476-481. doi:10.21577/0100-4042.20170043.
Kırık, O. T &Boz, Y. (2012) Cooperative learning instruction for conceptual change in the concepts of chemical kinetics. Chemistry Education Research and Practice, 13(3), 221–236.doi:10.1039/C1RP90072B.
Kolomuí§, A. & í‡alık, M. (2012) A comparison of chemistry teachers'and grade 11 students' alternative conceptions of "˜rate of reaction'. Journal of Baltic Science Education, 11(4), 333-346.
Kí¶se, I. A. (2014). Assessing model data fit of unidimensional
item response theory models in simulated data. Academic Journal Educational Research and Reviews, 9(17), 642-649. doi:10.5897/ERR2014.1729.
Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226.doi:10.1016/S0959-4752(02)00021-X.
Kurt, S., & Ayas, A. (2012). Improving students' understanding and explaining real life problems on concepts of reaction rate by using a four step constructivist approach. Energy Education Science and Technology Part B: Social and Educational Studies, 4(2), 979-992.
Leech, N. L., Barret, K. C., & Morgan, G. A. (2005). SPSS for intermediate statistics: Use and interpretation. New Jersey, NJ: Lawrence Erlbaum Associates, Inc.
Li, W. S., & Arshad, M. Y. (2014). Application of multiple representation levels in redox reactions among tenth grade chemistry teachers. Journal of Turkish Science Education, 11(3), 35-52.doi:10.12973/tused.10117a.
Mayer, R. E. (2002). Rote versus meaningful learning. Theory into Practice, 41(4), 226-232. doi:10.1207/s15430421tip4104_4.
Milenković, D., Segedinac, M., Hrin, T., & Cvjetićanin, S. (2014). Cognitive load at different levels. Croatian Journal of Education, 16(3), 699-722.
Olakanmi, E. (2015). The effects of a web-based computer simulation on students' conceptual understanding rate of reaction and attitude towards chemistry. Journal of Baltic Science Education, 14(5), 627-640.
Petrovska, S., &Veselinovska, S. S. (2013). Contemporary pedagogical approaches for developing higher level thinking on science classes. Procedia – Social and Behavioral Sciences, 92, 702-710. doi:10.1016/j.sbspro.2013.08.72.
Pratiwi, Y., Rahayu, S., & Fajaroh, F. (2016). Socioscientific issues (SSI) in reaction rates topic and its effect on the critical thinking skills of high school student. Jurnal Pendidikan IPA Indonesia, 5(2), 164-170. doi:10.15294/jpii.v5i2.7676.
Ramirez, R. P. B., &Ganaden, M. S. (2008). Creative activities and students' higher order thinking skills. Education Quarterly, 66(1), 22-33. doi: 10.1.1.824.9279
Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, 4(3), 207-230. doi:10.3102/10769986004003207.
Redhana, I. W., & Merta, L. M. (2017). Green chemistry practicum to improve student learning outcomes of reaction rate topic. Cakrawala Pendidikan, 34(3), 382-403. doi:10.21831/cp.v36i3.13062.
Retnawati, H. (2014). Teori respon butir dan penerapannya untuk peneliti, praktisi pengukuran, dan pengujian mahasiswa pascasarjana. Yogyakarta: Parama Publishing.
Retnawati, H. (2016). Validitas reliabilitas & karakteristik butir. Yogyakarta: Parama Publishing.
Sangoseni, O., Hellman, M., & Hill, C. (2013). Development and validation of a questionnaire to assess the effect of online learning on behaviors, attitudes, and clinical practices of physical therapist in the United States regarding evidence-base clinical practice. The International Journal of Allied Health Sciences and Practice, 11(2), 1-12.
Seí§ken, N &Seyhan, H.G. (2015). An analysis of high school students' academic achievement and anxiety over graphical chemistry problems about the rate of reaction: The case of Sivas province.Procedia-Social and Behavioral Sciences, 174, 347-354.doi:10.1016/j.sbspro.2015.01.671.
Sunyono, Yuanita, L., & Ibrahim, M. (2015). Mental models of students on stoichiometry consept in learning by method based on multiple representation. The Online Journal of New Horizons in Education, 5(2), 30-45.
Supasorn, S., &Promarak, V. (2015). Implementation of 5E inquiry incorporated with analogy learning approach to enhance conceptual understanding of chemical reaction rate for grade 11 students. Chemistry Education Research and Practice, 16(1), 121–132.doi:10.1039/c4rp00190g.
Taleb, D. M., & Chadwick, C. (2016). Enhancing student critical and analytical thinking skills at a higher education level in developing countries: Case study of the british university in dubai. Journal of Educational and Instructional Studies, 6(1), 67-77.
Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry "triplet". International Journal of Science Education, 33(2), 179-195.doi:10.1080/09500690903386435.
Tastan, í–., Yalcinkaya, E., & Boz, Y. (2010). Pre-service chemistry teachers' ideas about reaction mechanism.Journal of Turkish Science Education, 7(1), 47-60.
Thaneerananon, T., Triampo, W., &Nokkaew, A. (2016). Development of a test to evaluate students' analytical thinking based on fact versus opinion differentiation. International Journal of Instruction, 9(2), 123-138. doi:10.12973/iji.2016.929a.
Treagust, D. F., Chittleborough, G., &Mamiala, T. L. (2003). The role of subsub-microscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368. doi:10.1080/0950069032000070306.
Trochim, W.M. (1999). The research methods knowledge base (2nd Ed.). Cincinnati, OH: Atomic Dog.
Turányi, T., &Tóth, Z. (2013). Hungarian university students' misunderstandings in thermodynamics and chemical kinetics. Chem. Educ. Res. Pract., 14(1), 105–116. doi:10.1039/c2rp20015e.
Wahyuningsih, H. (2009). Validitas konstruk alat ukur spirituality orientation inventory (SQI). Jurnal Psikologi, 36(2), 116-129. doi:10.22146/jpsi.7890.
Wiberg, M. (2004). Classical test theory vs item response theory: An evaluation of the theory test in the Swedish driving-license test. Santiago: Centro de EstudiosPúblicos.
Jurnal Cakrawala Pendidikan, Jurnal Ilmiah Pendidikan, with ISSN: 0216-1370, is published by the Institute of Education Development and Quality Assurance (LPPMP UNY). Cakrawala Pendidikan has been recently has been re-accredited by Indonesian Ministry of Education and Culture decision Number 51/E/KPT/2017 which is valid for five years since enacted on 4 December 2017.