Estimation of college students’ ability on real analysis course using Rasch model

Isnani Isnani, Universitas Pancasakti Tegal, Indonesia
Wikan Budi Utami, Universitas Pancasakti Tegal, Indonesia
Purwo Susongko, Universitas Pancasakti Tegal, Indonesia
Herani Tri Lestiani, Institut Agama Islam Negeri IAIN Syekh Nurjati, Cirebon, Indonesia

Abstract


This study is aimed at estimating the difficulty level of essay tests and the accuracy of students’ ability in Real Analysis essay test using the Rasch model with the QUEST program and R 3.0.3 package eRm program. The population in this study was all students of the Department of Mathematics Education, Universitas Pancasakti Tegal in the academic year 2016/2017, who were enrolled in the Real Analysis course. The data were analyzed using the R 3.0.3 package eRm program and QUEST program. The students’ ability was obtained from the result of the course final exam of the first Real Analysis course. The analysis shows that: (1) by using Rasch model for partial credit scoring, the difficulty level shows that 100% of essay questions in Real Analysis final exam is categorized as difficult, (2) the estimation of students’ ability in Real Analysis course using Rasch Model with CML method is better than the estimation of students’ ability using Rasch Model with JML approach.


Keywords


estimation of ability; level of difficulty; Rasch Model; Item Response Theory

Full Text:

PDF

References


Bartle, R. G., & Sherbert, D. R. (2000). Introduction to real analysis. New York, NY: John Wiley & Sons.

Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Buckley, K. E., Winkel, R. E., & Leary, M. R. (2004). Reactions to acceptance and rejection: Effects of level and sequence of relational evaluation. Journal of Experimental Social Psychology, 40(1), 14–28. https://doi.org/10.1016/S0022-1031(03)00064-7

Gierl, M. J. (2007). Making diagnostic inferences about cognitive attributes using the Rule-Space model and Attribute Hierarchy method. Journal of Educational Measurement, 44(4), 325–340. https://doi.org/10.1111/j.1745-3984.2007.00042.x

Glas, C. A. W., & Verhelst, N. D. (1989). Extensions of the partial credit model. Psychometrika, 54(4), 635–659. https://doi.org/10.1007/BF02296401

Griffin, P., & Nix, P. (1991). Educational assessment and reporting: A new approach. Sydney: Harcourt Jovanovich.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park, CA: Sage Publications.

Imaroh, N., Susongko, P., & Isnani, I. (2017). Uji validitas tes ulangan akhir semester gasal mata pelajaran matematika (Studi deskriptif analisis dokumenter di SMP Negeri Slawi tahun pelajaran 2016/2017). JPMP (Jurnal Pendidikan MIPA Pancasakti), 1(1), 80–89. https://doi.org/10.24905/jpmp.v1i1.792

Isgiyanto, A. (2011). Analisis data ujian nasional matematika berdasarkan penskoran model Rasch dan model Partial Credit. Prosiding Seminar Nasional Penelitian, Pendidikan Dan Penerapan MIPA, 43–52. Retrieved from https://eprints.uny.ac.id/7172/1/PM-7 - Awal Isgiyanto.pdf

Keeves, J. P., & Masters, G. N. (1999). Introduction. In G. N. Masters & J. P. Keeves (Eds.), Advances in measurement in educational research and assessment. Amsterdam: Pergamon-Elsevier Science.

Kurniawan, D. D., & Mardapi, D. (2015). Penyetaraan vertikal tes matematika SMP dengan teori respons butir model Rasch. Jurnal Evaluasi Pendidikan, 3(1), 12–25. Retrieved from http://journal.student.uny.ac.id/ojs/index.php/jep/article/view/1221/1093

Lababa, D. (2008). Analisis butir soal dengan teori tes klasik: Sebuah pengantar. Iqra’, 5, 29–37. Retrieved from https://jurnaliqro.files.wordpress.com/2008/08/03-jun-29-36.pdf

Mardapi, D. (2012). Pengukuran, penilaian, dan evaluasi pendidikan. Yogyakarta: Nuha Medika.

McMillan, J. H. (2005). Understanding and improving teachers’ classroom assessment decision making: Implications for theory and practice. Educational Measurement: Issues and Practice, 22(4), 34–43. https://doi.org/10.1111/j.1745-3992.2003.tb00142.x

Naga, D. S. (2003). Teori pengukuran. Retrieved from http://dali.staff.gunadarma.ac.id/Downloads/folder/0.1

Ningsih, L. D., & Isnani, I. (2010). Studi komparatif tingkat reliabilitas tes prestasi hasil belajar matematika pada tes bentuk uraian dengan model penskoran GPCM (Generalized Partial Credit Model) dan Penskoran GRM (Graded Response Model). Cakrawala: Jurnal Pendidikan, 4(8). https://doi.org/10.24905/cakrawala.v4i8.176

Retnawati, H. (2014). Teori respons butir dan penerapannya: Untuk peneliti, praktisi pengukuran dan pengujian, mahasiswa pascasarjana. Yogyakarta: Nuha Medika.

Schwartz, S. L. (2005). Teaching young children mathematics. London: Praeger.

Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan Rasch pada assessment pendidikan. Cimahi: Trim Komunikata.

Susongko, P. (2014). Pengantar metodologi penelitian pendidikan. Tegal: Universitas Pancasakti Tegal.

Tyler, R. (1950). Basic principles of curriculum and instruction. Chicago, IL: University of Chicago Press.

Wright, B., & Mok, M. M. C. (2004). An overview of the family of Rasch measurement models. In E. V. Smith Jr. & R. M. Smith (Eds.), Introduction to Rasch measurement: Theory, models and applications (pp. 1–24). Maple Grove, MN: JAM Press.

Wu, M., & Adams, R. (2007). Applying the Rasch model to psycho-social measurement: A practical approach. Melbourne: Educational Measurement.




DOI: https://doi.org/10.21831/reid.v5i2.20924

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Find REID (Research and Evaluation in Education) on:

  

ISSN 2460-6995 (Online)

View REiD Visitor Statistics