Understanding on Strategies of Teaching Mathematical Proof for Undergraduate Students

 Syamsuri Syamsuri, Indiana Marethi, Anwar Mutaqin

Abstract


Abstract: Many researches revealed that many students have difficulties in constructing proofs. Based on our empirical data, we develop a quadrant model to describe students’ classification of proof result. The quadrant model classifies a students’ proof construction based on the result of mathematical thinking. The aim of this article is to describe a students’ comprehension of proof based on the quadrant model in order to give appropriate suggested learning. The research is an explorative research and was conducted on 26 students majored in mathematics education in public university in Banten province, Indonesia. The main instrument in explorative research was researcher itself. The support instruments are proving-task and interview guides. These instruments were validated from two lecturers in order to guarantee the quality of instruments.Based on the results, some appropriate learning activities should be designed to support the students’ characteristics from each quadrant, i.e: a hermeneutics approach, using the two-column form method, learning using worked-example, or using structural method.

Keywords:proof, proving learning, undergraduate, quadrant model

 

Memahami Strategi Pengajaran Pembuktian Matematis di Perguruan Tinggi

Abstrak: Banyakpeneliti pendidikan matematika menyatakan bahwa siswa mengalami kesulitan dalam mengonstruksi bukti. Berdasarkan kajian empiris, penulis membangun suatu model kuadran untuk mendeskripsikan kategori konstruksi bukti yang dibangun siswa. Model kuadran tersebut mengklasifikasikan konstruksi bukti berdasarkan cara berpikir matematis saiwa. Adapun tujuan dari artikel ini ialah mendeskripsikan pemahaman siswa dalam mengonstruksi bukti berdasarkan model kuadran serta memberikan saran strategi pembelajarannya. Penelitian ini merupakan penelitian eksploratif yang melibatkan 26 mahasiswa Jurusan Pendidikan Matematika pada universitas negeri di Provinsi Banten. Instrumen utama dalam penelitian eksploratif adalah peneliti sendiri. Instrumen pendukungnya ialah tugas pembuktian matematis dan panduan wawancara. Kedua instrumen pendukung tersebut telah divalidasi untuk menjamin kualitas instrumen yang digunakan. Hasil penelitian ini memberikan saran terkait aktivitas pembelajaran yang seharusnya dilakukan oleh pengajar agar sesuai dengan karakteristik berpikir siswa dalam mengonstruksi bukti pada masing-masing kuadran, misalnya : pendekatan heurmenistik, menggunakan metode dua-kolom, pembelajaran worked-example ataupun menggunakan metode terstruktur.

Kata Kunci: bukti, pengajaran bukti, mahasiswa, model kuadran


Keywords


proof; proving learning; undergraduate; quadrant model

Full Text:

PDF

References


Andrew, L. (2009). Creating a proof error evaluation tool for use in the grading of student-generated “Proofs.” PRIMUS : Problems, Resources, and Issues in Mathematics Undergraduate Studies, 19(5), 447–462. https://doi.org/10.1080/10511970701765070

Baker, D., & Campbell, C. (2004). Fostering The Development of Mathematical Thinking : Observations from a Proofs Course. PRIMUS : Problems, Resources, and Issues in Mathematics Undergraduate Studies, 14(4), 345–353. https://doi.org/10.1080/10511970408984098

Balacheff, N. (1988). Aspects of Proof in Pupils’ Practice os School Mathematics. Mathematics, Teacher and Children, 216–235.

Djauhari, M. A. (2015). Hermeneutics in teaching and learning mathematics: Revitalising mathematics education. ASM Science Journal, 9(2), 1–8.

Fadillah, S., & Jamilah. (2016). Pengembangan Bahan Ajar Struktur Aljabar Untuk Meningkatkan Kemampuan Pembuktian Matematis Mahasiswa. Jurnal Cakrawala Pendidikan, 1, 106–113.

Fuller, E., Mejía-Ramos, J. P., Weber, K., Samkoff, A., Rhoads, K., Doongaji, D., & Lew, K. (2011). No TitleComprehending Leron’s structured proofs. In S. Larsen, K. Marrongelle, & M. Oehrtman (Eds.), Proceedings of the 15th Annual Conference on Research in Undergraduate Mathematics Education (pp. 84–102).

Iannone, P., Inglis, M., Mejía-Ramos, J. P., Simpson, A., & Weber, K. (2011). Does generating examples aid proof production? Educational Studies in Mathematics, 77(1), 1–14. https://doi.org/10.1007/sl0649-01

Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate mathematics classroom. Educational Studies in Mathematics, 67(3), 205–216. https://doi.org/10.1007/s10649-007-9106-0

Lee, K. S. (2016). Students’ proof schemes for mathematical proving and disproving of propositions. Journal of Mathematical Behavior, 41, 26–44. https://doi.org/10.1016/j.jmathb.2015.11.005

Lehman, H. (1977). On Understanding Mathematics, 27(2), 111–119.

Leron, U. (1983). Structuring Mathematical Proofs. The American Mathematical Monthly, 90(3), 174–185. https://doi.org/10.2307/2975544

Margulieux, L. E., & Catrambone, R. (2016). Improving problem solving with subgoal labels in expository text and worked examples. Learning and Instruction, 42, 58–71. https://doi.org/10.1016/j.learninstruc.2015.12.002

McLaren, B. M., Van Gog, T., Ganoe, C., Karabinos, M., & Yaron, D. (2016). The efficiency of worked examples compared to erroneous examples, tutored problem solving, and problem solving in computer-based learning environments. Computers in Human Behavior, 55, 87–99. https://doi.org/10.1016/j.chb.2015.08.038

Meel, D. (2003). Models and Theories of Mathematical Understanding : Comparing Pirie and Kieren’s Model of Growth of Mathematical Understanding and APOS Theory. CBMS Issue in Mathematics Education American Mathematical Society, 12.

Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79, 3–18. https://doi.org/10.1007/s10649-011-9349-7

Moore, R. C. (1994). Making the transition to formal proof*. Educational Studies in Mathematics, 27, 249–266.

Pirie, S., & Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. For the Learning of Mathematics, 9(3), 7–11. https://doi.org/10.2307/40248156

Recio, A. M., & Godino, J. D. (2001). Institutional and personal meanings of mathematical proof. Educational Studies in Mathematics, 48, 83–99. https://doi.org/10.1017/CBO9781107415324.004

Retnowati, E., Ayres, P., & Sweller, J. (2010). Worked example effects in individual and group work settings. Educational Psychology, 30(3), 349–367. https://doi.org/10.1080/01443411003659960

Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34(1), 4–36. https://doi.org/10.2307/30034698

Selden, J., & Selden, A. (1995). Unpacking the Logic of Mathematical Statements. Educational Studies in Mathematics, 29(2), 123–151.

Skemp, R. R. (1978). Relational Understanding and Instrumental Understanding. The Arithmetic Teacher, 26(3), 9–15. https://doi.org/10.1017/CBO9781107415324.004

Sowder, L., & Harel, G. (2003). Case studies of mathematics majors’ proof understanding, production, and appreciation. Canadian Journal of Science, Mathematics and Technology Education, 3(January 2015), 251–267. https://doi.org/10.1080/14926150309556563

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the Transition from Empirical Arguments to Proof. Journal for Research in Mathematics Education, 40(3), 314–352. https://doi.org/10.2307/40539339

Syamsuri, Purwanto, Subanji, & Irawati, S. (2016). Characterization of students formal-proof construction in mathematics learning. Communications in Science and Technology, 1(2), 42–50.

Syamsuri, Purwanto, Subanji, & Irawati, S. (2017). Using APOS Theory Framework : Why Did Students Unable to Construct a Formal Proof ? International Journal on Emerging Mathematics Education, 1(2), 135–146.

Syamsuri, & Santosa, C. (2017). Karakteristik pemahaman mahasiswa dalam mengonstruksi bukti matematis. Jurnal Review Pembelajaran Matematika, 2(2), 131–143. https://doi.org/https://doi.org/10.15642/jrpm.2017.2.2.131-143

Tall, D. (2010). Perception, Operations and Proof in Undergraduate Mathematics. Community for Undergraduate Mathematics Sciences Newsletter University of Auckland, pp. 21–28.

Tall, D., Yevdokimov, O., Koichu, B., Whiteley, W., Kondrieteva, M., & Cheng, Y. H. (2012). Cognitive Development of Proof. In G. Hanna & M. De Villiers (Eds.), Proof and proving in mathematics education, The 19th ICMI Study (pp. 13–49). New York: Springer. https://doi.org/10.1007/978-94-007-2129-6

Van Dormolen, J. . (1977). Learning to Understand What Giving a Proof Really Means. Educational Studies in Mathematics, 8(1), 27–34.

Varghese, T. (2011). Balacheff ’ s 1988 Taxonomy of Mathematical Proofs. Eurasia Journal of Mathematics, Science & Technology Education, 7(3), 181–192.

Weber, K. (2001). Student Difficulty in Constructing Proofs : The Need for Strategic Knowledge. Educational Studies in Mathematics, 48(1), 101–119.

Weber, K. (2004). A framework for describing the processes that undergraduates use to construct proofs. In Proceedings of the Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 425–432).

Weber, K. (2005). Problem-solving, proving, and learning: The relationship between problem-solving processes and learning opportunities in the activity of proof construction. Journal of Mathematical Behavior, 24, 351–360. https://doi.org/10.1016/j.jmathb.2005.09.005

Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics, 56, 209–234. https://doi.org/10.1023/B:EDUC.0000040410.57253.a1

Weiss, M., Herbst, P., & Chen, C. (2009). Teachers Perspectives on “ Authentic Mathematics ” and the Two-Column Proof Form. Educational Studies in Mathematics, 70(3), 275–293. https://doi.org/10.1007/sl0649-008-9144-2




DOI: https://doi.org/10.21831/cp.v37i2.19091

Refbacks

  • There are currently no refbacks.


Printed ISSN (p-ISSN): 0216-1370 
Online ISSN (e-ISSN): 2442-8620
 

Our Journal has been Indexed by:

 

 Creative Commons License
Jurnal Cakrawala Pendidikan by Lembaga Pengembangan dan Penjaminan Mutu Pendidikan UNY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/cp/index.

Translator
 
 web
analytics
View Our Stats

Flag Counter