Sintesis dan Karakterisasi Antibakteri Polyacrylamide yang Difungsionalisasi oleh Graphene Oxide dengan Metode Adsorpsi Fisis

Fika Fauzi, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia
Silvia Nur Fatmawati, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia
Fitria Wulandari, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia
Wipsar Sunu Brams Dwandaru, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia

Abstract


Inovasi dalam teknologi pelapis antibakteri sangat dibutuhkan untuk melawan kolonisasi bakteri pada permukaan peralatan fungsional seperti peralatan medis. Pelapis antibakteri tersebut selain memiliki efek antibakteri juga harus bersifat tidak beracun atau biokompatibel. Polyacrylamide (PAM) terkenal sebagai polimer yang biokompatibel namun tidak memiliki efek antibakteri dan graphene oxide (GO) merupakan salah satu material baru yang memiliki efek antibakteri. Dalam studi ini, komposit PAM/GO telah disintesis dengan pendekatan adsorpsi fisis antara molekul polimer dan lembaran GO melalui metode ultrasonik. Struktur dari komposit ini kemudian dianalisis dengan spektroskopi UV-Vis dan FTIR. Dari data spektroskopi tersebut diperoleh bahwa komposit PAM/GO berhasil disintesis melalui pendekatan interaksi adsorpsi fisis. Sementara itu, uji antibakteri pada bakteri S. aureus menunjukkan bahwa PAM/GO memiliki efek antibakteri yang signifikan meskipun dengan komposisi GO yang hanya 1,5% dari komposisi PAM. Hal ini dapat menjadi pembuka untuk memanfaatkan PAM/GO sebagai pelapis antibakteri yang biokompatibel.

Keywords


Graphene oxide (GO); Polyacrylamide (PAM); komposit; adsorpsi fisis; antibakteri

Full Text:

PDF

References


Chen, J. Y., Xie, P., & Zhang, Z. P. (2019). Reduced graphene oxide/polyacrylamide composite hydrogel scaffold as biocompatible anode for microbial fuel cell. Chemical Engineering Journal, 361(1), 615-624.

Karelse, A., Van Tongel, A., Van Isacker, T., Berghs, B., & De Wilde, L. (2016). Parameters influencing glenoid loosening. Expert Review of Medical Devices, 13(8), 773-784.

Variola, F., Brunski, J. B., Orsini, G., de Oliveira, P. T., Wazen, R., & Nanci, A. (2011). Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives. Nanoscale, 3(2), 335-353.

Huhandy, A. J., & Kwon, J. (2011). Nano antibiotics’: A new paradigm for treating infectious diseases using nano materials in the antibiotic’s resistant era. Journal of Controlled Release, 156(1), 128-145.

Musil, J. (2017). Flexible antibacterial coatings. Molecules, 22(5), 813-819.

Díez-Pascual, A. M. (2020). Antibacterial Action of Nanoparticle Loaded nanocomposites based on graphene and its derivatives: A mini-review. International Journal of Molecular Sciences, 21(10), 3563-35678.

Dann, S. G., Selvaraj, A., & Thomas, G. (2007). mTOR Complex1–S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends in Molecular Medicine, 13(6), 252-259.

Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., & Cars, O. (2013). Antibiotic resistance the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098.

Sedghi, R., Shaabani, A., Mohammadi, Z., Samadi, F. Y., & Isaei, E. (2017). Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydrate Polymers, 159(1), 1-10.

Pan, N., Li, Z., Ren, X., & Huang, T. S. (2019). Antibacterial films with enhanced physical properties based on poly (vinyl alcohol) and halogen aminated‐graphene oxide. Journal of Applied Polymer Science, 136(44), 48176-480.

Zong, P., Wang, S., Zhao, Y., Wang, H., Pan, H., & He, C. (2013). Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (VI) from aqueous solutions. Chemical Engineering Journal, 220(1), 45-52.

Wrońska, N., Anouar, A., El Achaby, M., Zawadzka, K., Kędzierska, M., Miłowska, K., & Lisowska, K. (2020). Chitosan-functionalized graphene nanocomposite films: interfacial interplay and biological activity. Materials, 13(4), 998-1004.

Liu, R., Liang, S., Tang, X. Z., Yan, D., Li, X., & Yu, Z. Z. (2012). Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. Journal of Materials Chemistry, 22(28), 14160-14167.

Sun, Y., Zhang, K., Deng, R., Ren, X., Wu, C., & Li, J. (2018). Tunable stiffness of graphene oxide/polyacrylamide composite scaffolds regulates cytoskeleton assembly. Chemical Science, 9(31), 6516-6522.

Mahdavi, H., Rahmani, O., & Shahverdi, A. R. (2017). Polyacrylamide/reduced graphene oxide-Ag nanocomposite as highly efficient antibacterial transparent film. Journal of the Iranian Chemical Society, 14(1), 37-46.

Cong, H. P., Wang, P., & Yu, S. H. (2014). Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels. Small, 10(3), 448-453.

Tsetseris, L., & Pantelides, S. T. (2014). Graphene: An impermeable or selectively permeable membrane for atomic species?. Carbon, 67(1), 58-63.

Nine, M. J., Cole, M. A., Tran, D. N., & Losic, D. (2015). Graphene: a multipurpose material for protective coatings. Journal of Materials Chemistry A, 3(24), 12580-12602.

Fauzi, F., Suhendar, H., Kusumaatmaja, A., Nugroho, F., Triyana, K., Nugroho, A. A., & Santoso, I. (2018). A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years. Materials Research Express, 5(10), 105016.

Gao, W. (2015). The chemistry of graphene oxide. Graphene Oxide, 6(1), 61-95.

Saleem, H., Haneef, M., & Abbasi, H. Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204(1), 1-7.

Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong, H. Y., & Chhowalla, M. (2016). High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 353(6306), 1413-1416.

Jahandideh, H., Ganjeh-Anzabi, P., Bryant, S. L., & Trifkovic, M. (2018). The significance of graphene oxide-polyacrylamide interactions on the stability and microstructure of oil-in-water emulsions. Langmuir, 34(43), 12870-12881.

Kadajji, V. G., & Betageri, G. V. (2011). Water soluble polymers for pharmaceutical applications. Polymers, 3(4), 1972-2009.

Evingür, G. A., & Pekcan, Ö. (2018). Mechanical properties of graphene oxide–polyacrylamide composites before and after swelling in water. Polymer Bulletin, 75(4), 1431-1439.

Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971-6980.




DOI: https://doi.org/10.21831/jsd.v9i2.38966

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Fika Fauzi, Silvia Nur Fatmawati, Fitria Wulandari, Wipsar Sunu Brams Dwandaru


Printed ISSN (p-ISSN): 2085-9872
Online ISSN (e-ISSN): 2443-1273

Indexer:
     

Creative Commons License
 
Jurnal Sains Dasar  is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
 
Free counters!
 
View My Stats