PENGARUH JENIS INOKULAN DAN DOSIS KOMPOS DALAM FITOREMEDIASI MENGGUNAKAN TANAMAN RAMI

Desvia Diyanti Nursyabani, Universitas Padjadjaran, Indonesia
Pudjawati Suryatmana, Fakultas Pertanian Universitas Padjadjaran
Rija Sudirja, Fakultas Pertanian Universitas Padjadjaran

Abstract


Penelitian ini bertujuan untuk mengetahui interaksi antara pemberian jenis inokulan dan kompos rami terhadap laju degradasi hidrokarbon, total populasi Azospirillum sp., dan diameter batang rami. Penelitian ini dilaksanakan dari bulan November 2017 sampai dengan Februari 2018 di Laboratorium Biologi Tanah, Laboratorium Kimia Tanah dan Nutrisi Tanaman, Rumah Kaca dan Kebun Percobaan Fakultas Pertanian Universitas Padjadjaran. Penelitian ini menggunakan rancangan percobaan acak kelompok (RAK) faktorial yang terdiri dari dua faktor yaitu jenis inokulan dan dosis kompos. Perhitungan total populasi Azospirillum sp. dengan metode Total Plate Count (TPC) dan pengukuran kadar Total Petroleum Hidrokarbon (TPH) dengan metode gravimetri. Berdasarkan hasil penelitian dapat disimpulkan bahwa faktor perlakuan jenis inokulan dan dosis kompos pada fitoremediasi tanah tercemar hidrokarbon minyak bumi tidak menunjukkan adanya pengaruh interaksi terhadap laju degradasi hidrokarbon, total populasi Azospirillum sp., dan diameter batang tanaman rami. Terjadi pengaruh mandiri faktor perlakuan dosis kompos terhadap laju degradasi hidrokarbon dan diameter batang tanaman rami. Pengaruh mandiri dosis kompos rami memberikan hasil terbaik pada dosis 2,5% (w/w) terhadap peningkatan diameter batang tanaman rami.

THE EFFECT OF INOCULANT TYPE AND COMPOST DOSAGE IN PHYTOREMEDIATION PROCESS USING RAMIE PLANT

This study was aimed at determining the interaction between the administration of inoculant types and hemp compost to the rate of hydrocarbon degradation, the total population of Azospirillum sp., and the diameter of the hemp stem. This study was conducted from November 2017 to February 2018 in the Soil Biology Laboratory, Soil Chemistry, and Plant Nutrition Laboratory, Greenhouse and Experimental Gardens, Faculty of Agriculture, Padjadjaran University. This study used a Randomized Complete Block Design (RCBD) consisting of two factors: the type of inoculant and compost dose. Calculation of the total population of Azospirillum sp. by the Total Plate Count (TPC) method and measurement of Total Petroleum Hydrocarbon (TPH) levels by the gravimetric method. Based on the results, it can be concluded that the factor of inoculant treatment and compost dosage in phytoremediation of petroleum hydrocarbon polluted soils does not show any interaction effect on the rate of hydrocarbon degradation, total population of Azospirillum sp., and stem diameter of hemp plants. There is an independent effect of compost dose treatment factor on the rate of hydrocarbon degradation and stem diameter of the hemp plant. The independent effect of hemp compost dose gives the best results at a dose of 2.5% (w/w) to increase the diameter of the hemp plant stems.

 


Keywords


inokulan, kompos, fitoremediasi, rami

Full Text:

PDF

References


Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S., & Nabi, A. (2008). Evaluation of different carbon and nitrogen sources in production of biosur-factant by Pseudomonas fluorescens. Desalination, 223(1-3), 143-151.

Alexander, M. (1999). Biodegradation and bioremediation (2nd ed.). Oxford: Gulf Professional Publishing.

Anderson, W. C. (1995). Innovative reme-diation technology (Bioremediation). USA: Water Environment Federation.

BPstats. (2015). BP statistical review of world energy (64th ed.). Diunduh dari https://biomasspower.gov.in/document/Reports/BP%20statistical%20review-2015.pdf.

Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1995). Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal, 59(1), 125-133.

Cerniglia, C. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Bio-degradation 3(2-3), 351-368.

Chair, J. T. N., Goldsmith, C. D., & Evanylo, G. (2001). Enhanced biodegradation in landfills (Thesis). Master of Science Vir-ginia Polytechnic and State University, Virginia.

Chang, J. M., Huang, K. L., Yuan T. T. T., Lai, Y. K., & Hung, L. M. (2010). The anti-hepatitis B virus activity of boehmeria nivea extract in HBV-viremia SCID mice. eCAM, 7(2), 189-195.

Chaudhry, T. M., Hayes, W. J., Khan, A. G., & Khoo, C. S. (1998). Phytoremediation–Focusing on accumulator plants that remediate metal contaiminated soils. Australasian J. of Ecotoxicology, 4, 37-51.

Defirman. (2016). Respon tanaman rami (Boehmeria nivea L.Gaud) terhadap pemberian beberapa dosis fungi mikoriza arbuskula (FMA) pada ultisol (Skripsi tidak diterbitkan). Universitas Andalas, Padang.

Djuarnani, N. (2005). Cara cepat membuat kompos. Jakarta: Agromedia Pustaka.

Hindersah, R., Nurbaity, A., & Nursyamsi, D. (2015). Role of Nitrogen Fertilizer on Cadmium Uptake by Ramie (Boehmeria nivea (L.) Gaudich) Grown on Cadmium Contaminated Soil. Agrikultura, 26(1), 49-54.

Larasati, T. R. D., & Mulyana, N. (2013). Bioremediasi lahan tercemar limbah lumpur minyak menggunakan campuran bulking agents yang diperkaya konsorsia mikroba berbasis kompos iradiasi. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 9(2), 139-150.

Mayerni, R. (2006). Prospek dan peluang tanaman rami di Indonesia. Padang: Universitas Andalas Press.

Mohapatra, P, K. (2008). Textbook of environmental microbiology. New Delhi: I. K. International Publishing House Pvt. Ltd.

Notodarmojo, S. (2005). Pencemaran tanah dan air tanah. Bandung: Penerbit ITB.

Novarini, E., & Sukardan, M. D. (2015). Potensi serat rami (boehmeria nivea s. gaud) sebagai bahan baku industri tekstil dan produk tekstil dan tekstil teknik. Arena Tekstil, 30(2).

Nuryatini, & Wiloso, E. I. (2012). Uji metode analisis minyak terdispersi dalam air. Teknologi Indonesia, 33(1).

Pelczar, M. J., & Chan, E. C. S. (2005). Dasar-dasar mikrobiologi (Jilid 2). Jakarta: UI Press.

Priyanto, B., & Prayitno, J. (2007). Fitoremediasi sebagai sebuah teknologi pemulihan pencemaran, khususnya logam berat. Diunduh dari http://ltl.bppt.tripod.com/sublab/lflora1.htm.

Saadoun, I., Mohammad, M. J., Hameed, K. M., & Shawaqfah, M. (2008). Microbial populations of crude oil spill polluted soils at the Jordan-Iraq desert (The Badia region). Brazilian Journal of Microbiology, 39(3), 453-456.

Schnoor, J. L., & McCutcheon, S. (2003). Phytoremediation transformation and control of contaminants. USA: Wiley-Interscience Inc.

Shewfelt, K., Lee, H., & Zytner, R. G. (2005). Optimization of nitrogen for bioventing of gasoline contaminated soil. Journal of Environmental Engineering and Science, 4(1), 29-42.

Singh, D. P., & Dwivedi, S. K. (2004). Environmental microbiology and biotechnology. New Delhi: New Age International Ltd., Publishers.

Sulistyono, Suntoro, & Masykuri, M. (2012). Kajian dampak tumpahan minyak dari kegiatan operasi kilang minyak terhadap kualitas air dan tanah (Studi Kasus Kilang Minyak Pusdiklat Migas Cepu). Ekosains, 4(2), 23-34.

Wei, S., Yu-Cheng, J., Hu-Cheng, X., Yan-Wei, L., Huang, M., Wan-Li, K, & Dong, W. (2011). Tolerance to cadmium in ramie (Boehmeria nivea) genotypes and its evaluation indicators. Acta Agronomica Sinica, 37(2), 348-353.

Wulandari, A. P. (2015). Rami: Prospeksi serat dan limbah. Bandung: Unpad Press.




DOI: https://doi.org/10.21831/jps.v25i1.20035

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Jurnal Penelitian Saintek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 p-ISSN: 1412-3991 || e-ISSN: 2528-7036

Indexed by:

     

View My Stats