BIODEGRADASI MASKER MEDIS DAN NONMEDIS MENGGUNAKAN ISOLAT BAKTERI DALAM KOLOM WINOGRADSKY
Abstract
Sampah masker merupakan sampah infeksius dan sulit terurai di alam sehingga dampaknya berbahaya bagi lingkungan. Salah satu strategi untuk mengendalikan dampak sampah masker adalah biodegradasi. Penelitian ini bertujuan mengetahui perbedaan kemampuan degradasi masker medis dan nonmedis oleh 2 isolat bakteri terseleksi sebagai pendegradasi masker dalam kolom winogradsky yang diinkubasi pada kondisi lingkungan berbeda. Kolom winogradsky diinkubasi selama 40 hari dengan parameter yang diukur adalah jumlah dan kerapatan bakteri, pH, dan kehilangan massa masker setelah inkubasi. Data dianalisis dengan ANOVA α=0,05 menunjukkan bahwa jenis inokulum dan kondisi lingkungan berpengaruh signifikan terhadap nilai degradasi masker medis dan nonmedis. Uji DMRT menunjukkan bahwa inokulum terbaik dalam mendegradasi masker yaitu pada kondisi terang yaitu konsorsium AB dengan rerata persentase degradasi masker medis dan nonmedis secara berurutan 1,9% dan 3,24%, diikuti inokulum A sebesar 1,84% dan 2,69%; inokulum B sebesar 0,97% dan 1,29%. Setelah uji biodegradasi selama 40 hari terlihat bahwa inokulum A, B, AB, dan kontrol lumpur steril secara berurutan memiliki rerata jumlah koloni 2,95 x 1012 CFU/ml, 7,35 x 1011 CFU/ml, 5,96 x 1012 CFU/ml, dan 0 CFU/ml. Sementara itu, rerata nilai opticl density secara berurutan juga yaitu 0,240; 0,235; 0,249; dan 0,105.
Kata kunci: Biodegradasi, masker, kolom winogradsky
Keywords
References
Aragaw T.A. (2020). Surgical face masks asa potential source for microplastic pollution in the covid-19 scenario. Mar. Pollut.Bull, 159. https://doi.org/10.1016/j.marpolbul.2020.111517.
Arkatkar, A., Arutchelvi, J., Sudhakar, M., Bhaduri, S., Uppara, P. V., & Doble, M. (2009). Approaches to enhance the biodegradation of polyolefins. The Open Environmental Engineering Journal, 2(1).
Asmuni., Sholeh, A., & Sugeng, W. (2017). Pertumbuhan sawi yang berasosiasi dengan bakteri Synechococcus sp. pada berbagai kondisi media salinitas. Agrovigor, 10(1), 64-72.
Auta, H., Emenike, C., Jayanthi, B., & Fauziah, S. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15-21.
Babcs´anyi, I., Meite, F., & Imfeld, G. (2017). Biogeochemical gradients and microbial communities in winogradsky columns established with polluted wetland sediments. FEMS Microbiol. Ecol, 93, 1-11. https://doi.org/10.1093/femsec/fix089.
Bondaroff, Teale., & Cooke, Sam. (2020). Masks on the beach: the impact of covid-19 on marine plastic pollution. OceansAsia.
Buchholz, P.C.F., Feuerriegel, G., Zhang, H., Perez-Garcia, P., Nover, L.L., Chow, J., Streit, W.R., & Pleiss, J. (2022). Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database-PAZy. Proteins, 90(7), 1443-1456. https://doi.org/10.1002/prot.26325.
Chaudhary, P., Kumar, N.N., Deobagkar, D.N. (1997). The glucanases of Cellulomonas. Biotechnol Adv, 15(2), 315-331. https://doi.org/10.1016/S0734-9750(97)00010-4.
Chiellini, E., Corti, A., & Swift, G. (2003). Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polym. Degrad. Stab, 81(2), 341-351.
Das, M.P. & Kumar, S. (2015). An Approach to Low-density Polyethylene Biodegradation by Bacillus amyloliquefaciens. Biotech, 5, 81-86.
Esteban, D.J., Hysa, B., & Bartow-McKenney, C. (2015). Temporal and spatial distribution of the microbial community of Winogradsky columns. PLoS One, 10(8), e0134588.
Fadare, O.O., & Okoffo, E.D. (2020). Covid-19 face masks: a potential source of microplastic fibers in the environment. Sci. Total Environ, 737. https://doi.org/10.1016/j.scitotenv.2020.140279.
Fadlilah, F.R., & Shovitri, M. (2014). Potensi isolat bakteri Bacillus dalam mendegradasi plastik dengan metode kolom winogradsky. Jurnal Sains dan Seni ITS, 3(2), 40-43.
Gilan, I., Hadar, Y., & Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied microbiology and biotechnology, 65, 97-104.
Glass, J.E., Swift, Graham., American Chemical Society, Cellulose, Paper, and Textile Division., American Chemical Society, Science and Engineering., & American Chemical Society, Meeting 1989: Dallas, Tex. (1990). Agricultural and synthetic polymers : Biodegradability and utilization. American Chemical Society.
Gu, J.D., Ford, T.E., Mitton, D.B., & Mitchell, R. (2000). Microbial degradation and deterioration of polymeric materials (in: Revie W, editor). The uhlig corrosion handbook (2nd edition). Wiley.
Guzman, A., Gnutek, N., & Janik, H. (2011). Biodegradable polymers for food packaging – factors influencing their degradation and certification types – a comprehensive review. Chemical Technology, 5(1).
Habib, S., Iruthayam, A., Shukor, M.Y.A., Alias, S.A., Smykla, J., & Yasid, N.A. (2020). Biodeterioration of untreated polypropylene microplastic particles by antarctic bacteria. Polymers, 12(11), 1-12.
Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093-1100.
Idowu, G.A., Olalemi, A.O., & Ileke, K.D. (2023). Covid-19 face masks attracted Cellulomonas and Acinetobacter bacteria and provided breeding haven for red cotton bug (Dysdercus suturellus) and house cricket (Acheta domesticus). Environ Sci Pollut Res Int, 30(9), 23510-23526. https://doi.org/10.1007/s11356-022-23865-1.
Jeon H.L., Kwon J.S., Park S.H., & Shin J.Y. (2021). Association of mental disorders with SARS-CoV-2 infection and severe health outcomes: Nationwide cohort study. The British Journal of Psychiatry, 218(6), 344-351. https://doi.org/10.1192/bjp.2020.251.
Krasowska, K., Brzeska, J., Rutkowska, M., Dacko, P., Sobota, M., & Kowalczuk, M. (2022). The effect of poly(D,L-lactide) modification with poli[(R,S)-3-hydroxybutyrate] on the course of its degradation in natural environments. Polimery, 53(10), 730-736.
Kumar, S.S., & Bhoopathi, C.A. (2007). In vitro study of microbially treated and untreated sago factory effluent on growth of Vigna mungo and V. radiate. J. Ecotoxicol. Environ. Monit., 17, 263-268.
Lakhundi, S., Siddiqui, R., Khan, N.A. (2015). Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasit Vectors, 8, 23. https://doi.org/10.1186/ s13071-015-0642-7.
Leja, K., & Lewandowicz, G. (2009). Polymes biodegradation and biodegradation polymers: a review. Polish J. of Environ. Stud, 19 (2), 255-266.
Leonas, K.K., & Jones, C.R. (2003). The relationship of fabric properties and bacterial filtration efficiency for selected surgical face masks. J Text Appar Technol Manag, 3(2),1-8.
Madigan, M.T., Martinko, J.M., Stahl, D.A., & Clark, D.P. (2012). Brock biology of microorganisms (14th ed.). Penerbit Buku kedokteran EGC.
Mahjoubi, M., Aliyu, H., Cappello, S., Naifer, M., Souissi, Y., Cowan, D. A., & Cherif, A. (2019). The genome of Alcaligenes aquatilis strain BU33N: Insights into hydrocarbon degradation capacity. PLoS One, 14(9), e0221574.
Mohan, S.K., & Srivastava T. (2010). Microbial deterioration and degradation of polymeric materials. J Biochem Technol, 2, 210-215.
Moshynets, O., Boretska, M., & Spiers, A. J. (2013). From winogradsky’s column to contemporary research using bacterial microcosms. Nova Publishers, 1-27.
Novitasari, D.T., Purnomo, P.W., Jati, O.E., Ayuningrum, D., & Sabdaningsih, A. (2021). Skrining bakteri penghasil enzim amilase dari sedimen tambak udang vannamei (Litopenaeus vannamei). JFMR-Journal of Fisheries and Marine Research, 5(2), 297-303.
Paramita, P., Shovitri, M., & Kuswitasari, N.D. (2012). Biodegradasi sampah organik pasar dengan mikroorganisme alami tangki septik. Jurnal Sains Dan Seni ITS, 1, ISSN: 2301-928X.
Popraset, C. (1989). Organic waste recycling. John Wiley and Sons, Chicester.
Pourcher, A., Sutra, L., Hébé, I., Moguedet, G., Bollet, C., Simoneau, P., & Gardan, L. (2001). Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiol Ecol, 34(3), 229-241. https://doi.org/10.1111/j.1574-6941.2001.tb00774.x.
Pramesti, Ariska Hanum. (2023). Keanekaragaman bakteri pada limbah masker yang ditemukan di mangrove. Skripsi, FMIPA UNY.
Quan T., Wang F., Shao Y., Rittié L., Xia W., Orringer JS., Voorhees JJ., & Fisher GJ. (2013). Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J Invest Dermatol, 133(3), 658-667. https://doi.org/10.1038/jid.2012.364.
Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., & Rocha-Santos, T. (2020). COVID-19 pandemic repercussions on the use and management of plastics. Environ. Sci. Technol, 54(13), 7760-7765.
Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.
Setiawan, Rahmat., & Lanang, Pandu. (2007). Studi komparatif pengaruh penambahan zat aditif clarifying agent (millad 3988) dan nucleating agent (adk na-21 dan hpn-68l) pada produk polipropilena homopolimer ipp-film grade. Laporan Kerja Praktik. Departemen Metalurgi dan Material FTUI.
Shah, A.A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246-265.
Supriatin, Yati. (2008). Kajian produksi biogas skala laboratorium dengan inokulum konsorsium alami metanogen dalam substrat bungkil jarak pagar (Jatropha curcas L). Tesis. Bioteknologi ITB.
Tareen, A., Saeed, S., Iqbal, A., Batool, R., & Jamil, N. (2022). Biodeterioration of microplastics: a promising step towards plastics waste management. Polymers, 14(11), 2275. https://doi.org/10.3390/polym14112275.
Tarr, D.A., & Miessler, G.A. (2003). Inorganic chemistry (3rd ed.). Englewood Cliffs.
Thakur, S., & Rasool, R. (2022). Mobility and degradation of pesticides in soil-risk to groundwater contamination. Indian Journal of Entomology, 1-13. https://doi.org/10.55446/IJE.2022.790.
Tiralerdpanich, P., Sonthiphand, P., Luepromchai, E., Pinyakong, O., & Pokethitiyook, P. (2018). Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis. Mar Pollut Bull 133:595–605. https://doi.org/10.1016/j.marpolbul.2018.06.015.
Tokiwa, Yutaka., Calabia, Buenaventurada., Ugwu, Uchenna., & Aiba, Seiichi. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10, 3722-42. https://doi.org/10.3390/ijms10093722.
Usha R., Sangeetha T., & Palaniswamy M. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2(4), 200-204.
Vertommen, M.A.M.E., Nierstrasz, VA., Veer, M., & Warmoeskerken, M.M.C.G. (2005). Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol, 120, 376-386.
Vimala, P. P., & Mathew, L. (2016). Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology, 24, 232-239.
Webb, H., Arnott, J., Crawford, R., & Ivanova, E. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1-18.
Wilkes R.A., & Aristilde L. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J Appl Microbiol, 23(3):582-593. https://doi.org/10.1111/jam.13472.
Yoon M.G., Jeon H.J., & Kim M.N. (2012). Biodegradation of polyethylene by a soil bacterium and alkb cloned recombinant cell. J Bioremed Biodegrad, 3, 145. https://doi.org/10.4172/2155-6199.1000145.
DOI: https://doi.org/10.21831/jsd.v13i1.65994
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nella Sri Ambarwati