Singularitas Efek Tepi dari Diskontinuitas Saluran pada Resonator Silinder Tipe-H
Agung Bambang Setio Utomo, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Indonesia
Mitrayana Mitrayana, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Indonesia
Danang Lelono, Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Indonesia
Supardi Supardi, Jurusan Pendidikan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia
Abstract
Diskontinuitas saluran pada resonator silinder tipe-H sangat mempengaruhi perambatan gelombang akustik di dalamnya yang menimbulkan singularitas di ujung luas penampang resonator yang lebih kecil. Singularitas efek tepi ini memunculkan pola osilasi sehingga dapat mengurangi nilai koefisien transmisi akustik. Tujuan dari penelitian ini adalah menentukan desain optimal resonator dan frekuensi resonansinya dengan mempertimbangkan pengaruh diskontinuitas saluran. Metode yang digunakan dalam penelitian ini adalah simulasi lewat metode matriks transmisi (MMT) dan optimasi menggunakan algoritma genetika (AG). Adapun hasil yang diperoleh dalam penelitian ini adalah panjang buffer (l_buf )=48,8 mm, panjang resonator (l_res )=102,5 mm, jari-jari buffer (r_buf )=9,2 mm, dan jari-jari resonator (r_res )=2,9 mm, serta nilai frekuensi resonansi f=1610,6 Hz.
Keywords
Full Text:
PDFReferences
Baumann, B., Wolff, M., Kost, B., & Groninga, H. (2007). Finite element calculation of photoacoustic signals. Applied Optics, 46(7), 1120-1125.
El-Busaidy, S., Baumann, B., Wolff, M., & Duggen, L. (2018). Photoacoustics modelling using amplitude mode expansion method in a multiscale t-cell resonator. arXiv preprint arXiv:1810.11618.
Kost, B., Baumann, B., Germer, M., & Wolff, M. (2009). Shape optimization of photoacoustic resonators. WIT Trans. Built Environ, 106(5), 45-54.
Bijnen, F. G. C., Reuss, J., & Harren, F. J. M. (1996). Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Review of Scientific Instruments, 67(8), 2914-2923.
Riddle, A., & Selker, M. (2006). Impedance-optimized photo-acoustic spectroscopy. Applied Physics B, 85(2), 329-336.
Ranjbar, M., Arslanb, H., & Orak, M. (2018). Effect of geometry modification on sound transmis-sion loss in multi-chamber muffler. In The 8th International Conference on Acoustics & Vibration (ISAV2018) (pp. 1-12).
Bijnen, F. G. C., Reuss, J., & Harren, F. J. M. (1996). Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Review of Scientific Instruments, 67(8), 2914-2923.
Karal, F. C. (1953). The analogous acoustical impedance for discontinuities and constrictions of circular cross section. The Journal of the Acoustical Society of America, 25(2), 327-334.
Peat, K. S. (1988). The acoustical impedance at discontinuities of ducts in the presence of a mean flow. Journal of Sound and Vibration, 127(1), 123-132.
Liu, B., Liu, J., Wei, W., Shen, H., & Wei, Z. (2018). Suppression of low frequency sound transmission in fluid-filled pipe systems through installation of an anechoic node array. AIP Advances, 8(11), 115-123.
Chen, F. (2014). Optimization design of muffler based on acoustic transfer matrix and genetic algorithm. Journal of Vibroengineering, 16(5), 2216-2223.
Homentcovschi, D., & Bercia, R. (2018). Re-expansion method for generalized radiation impedance of a circular aperture in an infinite flange. The Journal of the Acoustical Society of America, 144(1), 32-40.
Mittra, R., & Lee, S. W. (1971). Analytical techniques in the theory of guided waves. New York: MacMilan.
Homentcovschi, D., & Miles, R. N. (2010). A re-expansion method for determining the acoustical impedance and the scattering matrix for the waveguide discontinuity problem. The Journal of the Acoustical Society of America, 128(2), 628-638.
Homentcovschi, D., & Miles, R. N. (2012). Re-expansion method for circular waveguide discontinuities: Application to concentric expansion chambers. The Journal of the Acoustical Society of America, 131(2), 1158-1171.
Zwillinger, D., & Jeffrey, A. (Eds.). (2007). Table of integrals, series, and products. Elsevier.
Romer, R. H. (1996). Handbook of mathematical formulas and integrals by Alan Jeffrey. American Journal of Physics, 64(1), 350-351.
Farooqui, M., Aurégan, Y., & Pagneux, V. (2018). Acoustic Propagation in lined ducts with varying cross-section using a Mild-Slope approximation. arXiv preprint arXiv:1809.03277.
Sadiku, M. N. (2018). Computational Electromagnetics with MATLAB®. CRC Press.
Wilcox, L. C., Stadler, G., Burstedde, C., & Ghattas, O. (2010). A high-order discontinuous Galerkin method for wave propagation through coupled elastic–acoustic media. Journal of Computational Physics, 229(24), 9373-9396.
Evans, D. V., & Fernyhough, M. (1995). Edge waves along periodic coastlines. Part 2. Journal of Fluid Mechanics, 297(1), 307-325.
Kanoria, M. (2001). Water wave scattering by thick rectangular slotted barriers. Applied Ocean Research, 23(5), 285-298.
McIver, M., Linton, C. M., & Zhang, J. (2002). The branch structure of embedded trapped modes in two‐dimensional waveguides. Quarterly Journal of Mechanics and Applied Mathematics, 55(2), 313-326.
Kirby, R., & Lawrie, J. B. (2005). A point collocation approach to modelling large dissipative silencers. Journal of Sound and Vibration, 286(1), 313-339.
Filippi, P., Bergassoli, A., Habault, D., & Lefebvre, J. P. (1998). Acoustics: Basic physics, theory, and methods. Elsevier.
Solokhin, N. (2003). Basic types of discontinuity in circular acoustic wave guide. The Journal of the Acoustical Society of America, 114(5), 2626-2632.
Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government printing office.
Chaigne, A., & Kergomard, J. (2016). Acoustics of musical instruments (pp. 844-pages). New York, NY: Springer New York.
Kim, Y. H. (2010). Sound propagation: an impedance-based approach. John Wiley & Sons.
Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (2000). Fundamentals of acoustics.
Kuttruff, H. (2007). Acoustics: An introduction. CRC Press.
Noreland, D. (2003). Impedance boundary conditions for acoustic waves in a duct with a step discontinuity. Computer Methods in Applied Mechanics and Engineering, 71(2), 197-224.
Besson, J. P. (2006). Photoacoustic spectroscopy for multi-gas sensing using near infrared lasers (No. THESIS). EPFL.
Bruneau, M., Garing, C., & Leblond, H. (1985). Quality factor and boundary-layer attenuation of lower order modes in acoustic cavities. Journal de Physique, 46(7), 1079-1085.
Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons.
Bramantyo, N. (2006). Desain resonator Hemlholtz ganda dengan menggunakan Matlab. Universitas Sebelas Maret.
McCall, J. (2005). Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics, 184(1), 205-222.
Chipperfield, A. J., & Fleming, P. J. (1995). The MATLAB genetic algorithm toolbox.
Yeh, L. J., Chang, Y. C., & Chiu, M. C. (2005). Shape optimal design on double-chamber mufflers using simulated annealing and a genetic algorithm. Turkish Journal of Engineering and Environmental Sciences, 29(4), 207-224.
DOI: https://doi.org/10.21831/jsd.v11i1.48872
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta