From Logs to Insights: A Comprehensive Framework for Data-Driven Learning Insights

Yerry Soepriyanto, Universitas Negeri Malang, Indonesia
Rengga Prakoso Nugroho, Universitas Negeri Malang, Indonesia
Mochammad Hilman Amirudin Nahri, Teknologi Pendidikan ID, Indonesia
Dany Wijaya Kesuma, Universitas Negeri Malang, Indonesia
Muhti Setiasih, Teknologi Pendidikan ID, Indonesia

Abstract


This study develops a theoretical framework for learning analytics utilizing data from the Moodle Learning Management System (LMS). Despite Moodle’s extensive use in educational settings, its potential for learning analytics remains underutilized. This research aims to design a predictive framework for identifying learning difficulties through Moodle’s internal analytics, incorporating various data points such as activity completion, attendance logs, social interactions, and learner habits. The study employs a research and development methodology with three main stages: (1) needs analysis and learning component identification, (2) theoretical framework design, and (3) validation through focused group discussions with learning experts. The framework integrates predictive modeling for learning retention, task load analysis, and personalized learning style assessments based on the VARK model. Results demonstrate that the framework effectively uses Moodle’s default logs for analyzing learner behavior, although it is limited to online interactions within the LMS. Validation confirms its alignment with Moodle’s architecture and online learning theories, with minor adjustments for task load components. The framework offers a scalable solution for institutions managing large student populations and varied learning models, serving as a foundation for early intervention and improved learning outcomes. Future studies could expand the framework’s scope to include offline and face-to-face interactions.

Keywords


learning analytic, data driven learning, personalized learning insight, access to education, robust learning performance

References


Ademi, N., Loshkovska, S., & Kalajdziski, S. (2019). Prediction of Student Success Through Analysis of Moodle Logs: Case Study. In S. Gievska & G. Madjarov (Eds.), ICT Innovations 2019. Big Data Processing and Mining (pp. 27–40). Springer International Publishing. https://doi.org/10.1007/978-3-030-33110-8_3

Adi, E. P., Praherdhiono, H., Hatun, D. I., Prihatmoko, Y., & Pradana, D. A. (2024). Effectiveness of Learning Management System of Universitas Negeri Malang in Supporting Distance Learning. JTP - Jurnal Teknologi Pendidikan, 26(1), 183–197. https://doi.org/10.21009/jtp.v26i1.39468

Baharuddin, F., & Naufal, M. F. (2023). Fine-Tuning IndoBERT for Indonesian Exam Question Classification Based on Bloom’s Taxonomy. Journal of Information Systems Engineering and Business Intelligence, 9(2), 253–263. https://doi.org/10.20473/jisebi.9.2.253-263

Baihaqi, W. M., & Munandar, A. (2023). Sentiment Analysis of Student Comment on the College Performance Evaluation Questionnaire Using Naïve Bayes and IndoBERT. JUITA : Jurnal Informatika, 11(2), 213. https://doi.org/10.30595/juita.v11i2.17336

Chai, C. S., Yu, D., King, R. B., & Zhou, Y. (2024). Development and Validation of the Artificial Intelligence Learning Intention Scale (AILIS) for University Students. Sage Open, 14(2), 21582440241242188. https://doi.org/10.1177/21582440241242188

Chung, C., & Ackerman, D. (2015). Student Reactions to Classroom Management Technology: Learning Styles and Attitudes Toward Moodle. Journal of Education for Business, 90(4), 217–223. https://doi.org/10.1080/08832323.2015.1019818

Cloud Natural Language. (n.d.). Google Cloud. Retrieved June 5, 2024, from https://cloud.google.com/natural-language

Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting Student Performance from LMS Data: A Comparison of 17 Blended Courses Using Moodle LMS. IEEE Transactions on Learning Technologies, 10(1), 17–29. https://doi.org/10.1109/TLT.2016.2616312

Einhardt, L., Tavares, T. A., & Cechinel, C. (2016). Moodle analytics dashboard: A learning analytics tool to visualize users interactions in moodle. 2016 XI Latin American Conference on Learning Objects and Technology (LACLO), 1–6. https://doi.org/10.1109/LACLO.2016.7751805

Gunawan, R. D., Sutisna, A., & Ana, E. F. (2024). Literature review: The role of learning management system (LMS) in improving the digital literacy of educators. Jurnal Inovasi Teknologi Pendidikan, 11(2), Article 2. https://doi.org/10.21831/jitp.v11i2.56326

Hernández-García, Á., & Conde-González, M. Á. (2016). Bridging the Gap between LMS and Social Network Learning Analytics in Online Learning: Journal of Information Technology Research, 9(4), 1–15. https://doi.org/10.4018/JITR.2016100101

Hidayat, E. I., Ramli, M., & Setiowati, A. J. (2021). Pengaruh Self Eficacy, Self Esteem, Dukungan Sosial Terhadap Stres Akademik Mahasiswa Tingkat Akhir. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 6(4), 635. https://doi.org/10.17977/jptpp.v6i4.14728

Ikawati, Y., Al Rasyid, M. U. H., & Winarno, I. (2020). Student Behavior Analysis to Detect Learning Styles in Moodle Learning Management System. 2020 International Electronics Symposium (IES), 501–506. https://doi.org/10.1109/IES50839.2020.9231567

Irawan, R., & Surjono, H. D. (2018). Pengembangan e-learning berbasis moodle dalam peningkatkan pemahaman lagu pada pembelajaran bahasa inggris. Jurnal Inovasi Teknologi Pendidikan, 5(1), 1–11. https://doi.org/10.21831/jitp.v5i1.10599

Jazuli, A., Widowati, & Kusumaningrum, R. (2023). Aspect-based sentiment analysis on student reviews using the Indo-Bert base model. E3S Web of Conferences, 448, 02004. https://doi.org/10.1051/e3sconf/202344802004

Kadoic, N., & Oreski, D. (2018). Analysis of student behavior and success based on logs in Moodle. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 0654–0659. https://doi.org/10.23919/MIPRO.2018.8400123

Kaliisa, R., Mørch, A. I., & Kluge, A. (2019). Exploring Social Learning Analytics to Support Teaching and Learning Decisions in Online Learning Environments. In M. Scheffel, J. Broisin, V. Pammer-Schindler, A. Ioannou, & J. Schneider (Eds.), Transforming Learning with Meaningful Technologies (Vol. 11722, pp. 187–198). Springer International Publishing. https://doi.org/10.1007/978-3-030-29736-7_14

Karagiannis, I., & Satratzemi, M. (2018). An adaptive mechanism for Moodle based on automatic detection of learning styles. Education and Information Technologies, 23(3), 1331–1357. https://doi.org/10.1007/s10639-017-9663-5

Kusumaningrum, D. A., & Marpanaji, E. (2014). PENGEMBANGAN E-LEARNING DENGAN PENDEKATAN TEORI KOGNITIF MULTIMEDIA PEMBELAJARAN DI JURUSAN TKJ SMK MUHAMMADIYAH 2 YOGYAKARTA. Jurnal Inovasi Teknologi Pendidikan, 1(1), 28–39. https://doi.org/10.21831/tp.v1i1.2457

Lerche, T., & Kiel, E. (2018). Predicting student achievement in learning management systems by log data analysis. Computers in Human Behavior, 89, 367–372. https://doi.org/10.1016/j.chb.2018.06.015

Maningtyas, R. D. T., & Kusumadewi, N. K. (2023). CHAT-GPT IMPLEMENTATION STRATEGIES IN LEARNING AT THE HIGHER EDUCATION LEVEL. Seminar Nasional Pendidikan Dan Pembelajaran, 0, Article 0. http://conference.um.ac.id/index.php/snpp/article/view/8741

Molins, L. L., & García, E. C. (2023). How to Embed SRL in Online Learning Settings? Design Through Learning Analytics and Personalized Learning Design in Moodle. Journal of New Approaches in Educational Research, 12(1), 120–138. https://doi.org/10.7821/naer.2023.1.1127

Murcahyanto, H. (2023). Penerapan Media Chat GPT pada Pembelajaran Manajemen Pendidikan terhadap Kemandirian Mahasiswa. Edumatic: Jurnal Pendidikan Informatika, 7(1), 115–122. https://doi.org/10.29408/edumatic.v7i1.14073

Mwalumbwe, I., & Mtebe, J. S. (2017). Using Learning Analytics to Predict Students’ Performance in Moodle Learning Management System: A Case of Mbeya University of Science and Technology. THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES, 79(1), 1–13. https://doi.org/10.1002/j.1681-4835.2017.tb00577.x

Nugroho, R. P., Nurhidayah, S., Soepriyanto, Y., & Purnomo, P. (2024). Acceptance Analysis of Learning Management System in Project-based Learning. JURNAL FASILKOM, 14(1), 122–128. https://doi.org/10.37859/jf.v14i1.6859

Nugroho, R. P., Soepriyanto, Y., Aprianto, M. T. P., Febriansah, A. T., Qolbi, M. S., & Khuluq, K. (2024). Leveraging IndoBERT and Google NLP for Learning Evaluation Tool. 2024 10th International Conference on Education and Technology (ICET), 168–173. https://doi.org/10.1109/ICET64717.2024.10778447

Nugroho, R. P., Soepriyanto, Y., & Wedi, A. (2024). Development of Learning Management System with Gamification Approach for Project-Based Learning. JTP - Jurnal Teknologi Pendidikan, 26(3), Article 3. https://doi.org/10.21009/jtp.v26i3.40873

Nurr Rokhmah, A. I., Widawati, C. W., Yuniarta, I. R., & Suwandi, S. (2022). Studi kasus pelaksanaan asesmen pembelajaran bahasa Indonesia menggunakan aplikasi Moodle. Jurnal Inovasi Teknologi Pendidikan, 9(2), 160–169. https://doi.org/10.21831/jitp.v9i2.51644

Papanikolaou, K., & Boubouka, M. (2020). Personalised Learning Design in Moodle. 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT), 57–61. https://doi.org/10.1109/ICALT49669.2020.00024

Peraić, I., & Grubišić, A. (2022). Development and Evaluation of a Learning Analytics Dashboard for Moodle Learning Management System. In G. Meiselwitz, A. Moallem, P. Zaphiris, A. Ioannou, R. A. Sottilare, J. Schwarz, & X. Fang (Eds.), HCI International 2022—Late Breaking Papers. Interaction in New Media, Learning and Games (pp. 390–408). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-22131-6_30

Rahayu, N. W., & Sari, D. N. (2023). Hubungan Antara Stres Akademik dengan Prokrastinasi Akademik Pada Mahasiswa Program Studi Keperawatan. Nutrix Journal, 7(1), 7. https://doi.org/10.37771/nj.v7i1.900

Rizki, G. A. F., & Daniamiseno, A. G. (2019). Pengembangan model blended learning dengan pendekatan cooperative mata kuliah ilmu lingkungan. Jurnal Inovasi Teknologi Pendidikan, 6(1), 42–55. https://doi.org/10.21831/jitp.v6i1.15560

Saputra, H., & Putra, A. M. A. (2021). Pengembangan framework pembelajaran kolaboratif untuk institusi pemerintah menggunakan ADDIE dan ISO 20000. Jurnal Inovasi Teknologi Pendidikan, 8(1), Article 1. https://doi.org/10.21831/jitp.v8i1.36054

Saqr, M., & Alamro, A. (2019). The role of social network analysis as a learning analytics tool in online problem based learning. BMC Medical Education, 19(1), 160. https://doi.org/10.1186/s12909-019-1599-6

Siswanto, S., Zhi-Hong, Z., & Bilanová, M. (2023). The effect of applying the blended learning model with the Moodle application on student cognitive improvement. Jurnal Inovasi Teknologi Pendidikan, 10(2), 133–139. https://doi.org/10.21831/jitp.v10i2.55506

Soepriyanto, Y., Azzahra Fazarini, P. F., Sulthoni, Maulida, T. R., Nurfahrudianto, A., & Afandi, Z. (2022). The Effect of Player Type in Learning Programming with Online Gamification Activities on Student Learning Outcomes. 2022 2nd International Conference on Information Technology and Education (ICIT&E), 382–386. https://doi.org/10.1109/ICITE54466.2022.9759850

Soepriyanto, Y., & Kuswandi, D. (2021). Gamification Activities for Learning Visual Object-Oriented Programming. 2021 7th International Conference on Education and Technology (ICET), 209–213. https://doi.org/10.1109/ICET53279.2021.9575076

Soepriyanto, Y., Rumianda, L., Permatasari, A. M., & Nurabadi, A. (2021). Gamification Berbasis Learning Management System di SIPEJAR. Simposium Nasional Gagasan Keprofesian Bagi Alumni AP, MP, Dan MPI Dalam Menghadapi Tantangan Di Era Global Abad 21, 1(1).

Suh, W., & Ahn, S. (2022). Development and Validation of a Scale Measuring Student Attitudes Toward Artificial Intelligence. Sage Open, 12(2), 21582440221100463. https://doi.org/10.1177/21582440221100463

Suharmawan, W. (2023). Pemanfaatan Chat GPT Dalam Dunia Pendidikan. Education Journal : Journal Educational Research and Development, 7(2), 158–166. https://doi.org/10.31537/ej.v7i2.1248

Tamada, M. M., Giusti, R., & De Magalhaes Netto, J. F. (2021). Predicting Student Performance Based on Logs in Moodle LMS. 2021 IEEE Frontiers in Education Conference (FIE), 1–8. https://doi.org/10.1109/FIE49875.2021.9637274

Verdú, M. J., De Castro, J.-P., Regueras, L. M., & Corell, A. (2021). MSocial: Practical Integration of Social Learning Analytics Into Moodle. IEEE Access, 9, 23705–23716. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3056914

Wang, Y.-Y., & Chuang, Y.-W. (2024). Artificial intelligence self-efficacy: Scale development and validation. Education and Information Technologies, 29(4), 4785–4808. https://doi.org/10.1007/s10639-023-12015-w

Wibowo, T. U. S. H., Akbar, F., Ilham, S. R., & Fauzan, M. S. (2023). Tantangan dan Peluang Penggunaan Aplikasi Chat GPT Dalam Pelaksanaan Pembelajaran Sejarah Berbasis Dimensi 5.0. JURNAL PETISI (Pendidikan Teknologi Informasi), 4(2), 69–76. https://doi.org/10.36232/jurnalpetisi.v4i2.4226

Yassine, S., Kadry, S., & Sicilia, M.-A. (2016). A framework for learning analytics in moodle for assessing course outcomes. 2016 IEEE Global Engineering Education Conference (EDUCON), 261–266. https://doi.org/10.1109/EDUCON.2016.7474563




DOI: https://doi.org/10.21831/jitp.v12i1.77432

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Rengga Prakoso Nugroho, Saida Ulfa, Yerry Soepriyanto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Our journal indexed by:

       

View Journal Statistics