Rubber Production Projection in Riau Province using Autoregressive Integrated Moving Average (ARIMA) Approach

Fadhlan Zuhdi, Center for Agricultural Technology Studies, Riau, Indonesia
Rizqi Sari Anggraini, Center for Agricultural Technology Studies, Riau, Indonesia
Rachmiwati Yusuf, Center for Agricultural Technology Studies, Riau, Indonesia

Abstract


Abstract

Rubber has long  been become a mainstay of Indonesian exports along with oil palm, coffee and tea. As a commodity that has increasing world demand, rubber exports are given priority. This must be responded quickly by the government in order to increase national income from the export side. Riau as the third largest national rubber producer has great potential to increase rubber production. Therefore, it is necessary to make further analysis related the targets that need to be achieved, so the development of rubber production can be applied measuredly. Analysis using the ARIMA method is used to predict rubber production in the next five years (2021-2025). The results of the analysis showed that there will be an increase in rubber production by 2.38 percent with a maximum increase up to 3.05 percent. This increase is still at a low level, so efforts need to be made to increase rubber production.

Keywords: ARIMA, export, production, projection, rubber

Proyeksi Produksi Karet di Provinsi Riau dengan Pendekatan Autoregressive Integrated Moving Average (ARIMA)

Abstrak

Karet telah sejak lama menjadi produk andalan ekspor Indonesia bersama dengan kelapa sawit, kopi dan teh. Sebagai komoditas yang terus mengalami peningkatan permintaan di dunia menyebabkan ekspor karet menjadi sebuah keuntungan. Hal tersebut harus dapat direspon dengan cepat oleh pemerintah guna meningkatkan pendapatan nasional dari sisi ekspor sehingga dapat meningkatkan perekonomian dalam negeri. Provinsi Riau sebagai provinsi yang memiliki kontribusi terbesar ketiga sebagai produsen karet nasional memiliki potensi yang besar untuk dapat meningkatkan produksi karet. Oleh sebab itu, perlu adanya analisis lebih lanjut terkait dengan target yang perlu dicapai agar pengembangan produksi karet dapat diaplikasikan secara terukur. Analisis dengan metode ARIMA digunakan untuk memproyeksikan produksi karet lima tahun mendatang (2021-2025). Hasil analisis menunjukkan bahwa akan terjadi peningkatan produksi karet sebesar 2.38 persen dengan peningkatan maksimum mencapai 3.05 persen. Kenaikan tersebut masih berada pada taraf yang rendah sehingga perlu dilakukan upaya agar terjadi peningkatan produksi karet.

Kata kunci: ARIMA, karet, ekspor, produksi, proyeksi


Keywords


ARIMA, export, production, projection, rubber

Full Text:

PDF

References


Bangun, R. H. B. (2017). Penerapan Autoregressive Integrated Moving Average (ARIMA) pada Peramalan Produksi Kedelai di Sumatera Utara. Jurnal Agrica, 9(2), 90. https://doi.org/10.31289/agrica.v9i2.484

Boerhendhy, I., & Amypalupy, K. (2010). Optimalisasi Produktivitas Karet Melalui Penggunaan Bahan Tanam, Pemeliharaan, Sistem Eksploitasi dan Peremajaan Tanaman. Jurnal Penelitian Dan Pengembangan Pertanian, 30(1), 23–30. https://doi.org/10.21082/jp3.v30n1.2011.p23-30

Central Bureau of Statistics. (2020a). Ekspor Karet Remah Menurut Negara Tujuan Utama. Badan Pusat Statistik. https://www.bps.go.id/statictable/2019/02/27/2030/ekspor-karet-remah-menurut-negara-tujuan-utama-2012-2019.html

Central Bureau of Statistics. (2020b). Luas Tanaman Perkebunan Menurut Provinsi. Badan Pusat Statistik. https://www.bps.go.id/indicator/54/131/1/luas-tanaman-perkebunan-menurut-provinsi.html

Central Bureau of Statistics. (2020c). Produksi Tanaman Perkebunan. Badan Pusat Statistik. https://www.bps.go.id/indicator/54/132/1/produksi-tanaman-perkebunan.html

Damanik, S. (2012). Pengembangan Karet (Havea brasiliensis) Berkelanjutan di Indonesia. Perspektif, 11(1), 91–102.

Daulika, P., Peng, K.-C., & Hanani, N. (2020). Analysis on Export Competitiveness and Factors Affecting of Natural Rubber Export Price in Indonesia. Agricultural Social Economic Journal, 20(1), 39–44. https://doi.org/10.21776/ub.agrise.2020.020.1.6

Hanurowati, N., & Prahutama, A. (2016). Pemodelan dan Peramalan Indeks Harga Saham Gabungan (IHSG), Jakarta Islamic Index (JII), dan Harga Minyak Dunia Brent Crude Oil menggunakan Metode Vector Autoregressive Exogenous (VARX). Jurnal Gaussian, 5(4), 683–693.

Jia, C., Wei, L., Wang, H., & Yang, J. (2015). A Hybrid Model Based on Wavelet Decomposition-Reconstruction in Track Irregularity State Forecasting. Mathematical Problems in Engineering, 2015(1), 1–13. https://doi.org/10.1155/2015/548720

Junaidi. (2020). Peningkatan Produktivitas Karet Nasional Melalui Percepatan Adopsi Inovasi di Tingkat Petani. Jurnal Perspektif, 19(1), 17–28. https://doi.org/10.21082/psp.v19n1.2020

Maulana, H. A. (2018). Pemodelan Deret Waktu dan Peramalan Curah Hujan pada Dua Belas Stasiun di Bogor. Jurnal Matematika Statistika Dan Komputasi, 15(1), 50. https://doi.org/10.20956/jmsk.v15i1.4424

Ministry of Agriculture of the Republic of Indonesia. (2020a). Basis Data Statistik Pertanian. Kementerian Pertanian. https://aplikasi2.pertanian.go.id/bdsp/

Ministry of Agriculture of the Republic of Indonesia. (2020b). Produksi Tanaman Perkebunan Provinsi Riau. Kementerian Pertanian. https://aplikasi2.pertanian.go.id/bdsp/id/komoditas

Ministry of Agriculture of the Republic of Indonesia. (2020c). Strategi Kementan Tingkatkan Harga Karet. Kementerian Pertanian. https://www.pertanian.go.id/home/?show=news&act=view&id=3667

Ministry of Agriculture of the Republic of Indonesia. (2021). Luas Areal Perkebunan Provinsi Riau. Kementerian Pertanian. https://aplikasi2.pertanian.go.id/bdsp/id/komoditas

Nyoni, T. (2018). Box-Jenkins ARIMA Approach to Predicting Net FDI Inflows in Zimbabwe. Munich Personal RePEc Archive, 87737. https://mpra.ub.uni-muenchen.de/id/eprint/87737

Qonita, A., Pertiwi, A. G., & Widiyaningtyas, T. (2017). Prediction of Rupiah Against US Dollar by using ARIMA. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2017-Decem(September), 19–21. https://doi.org/10.1109/EECSI.2017.8239205

Riadi, F., Machfud, Bantacut, T., & Sailah, I. (2011). Model Pengembangan Agroindustri Karet Alam Terintegrasi. Jurnal Teknk Industri Pertanian, 21(3), 146–153.

Sena, D., & Nagwani, N. K. (2015). Application of Time Series Based Prediction Model to Forecast per Capita Disposable Income. Souvenir of the 2015 IEEE International Advance Computing Conference, IACC 2015, 3, 454–457. https://doi.org/10.1109/IADCC.2015.7154749

Stellwagen, E., & Tashman, L. (2013). ARIMA : The Models of Box and Jenkins. Foresight: The International Journal of Applied Forecasting, 30, 28–34.

Trademap. (2020). Trade Statistics for International Business Development. International Trade Centre. https://www.trademap.org/

Zhang, H., Zhang, S., Wang, P., Qin, Y., & Wang, H. (2017). Forecasting of Particulate Matter Time Series using Wavelet Analysis and Wavelet-ARMA/ARIMA Model in Taiyuan, China. Journal of the Air and Waste Management Association, 67(7), 776–788. https://doi.org/10.1080/10962247.2017.1292968




DOI: https://doi.org/10.21831/economia.v18i1.36426

Refbacks

  • There are currently no refbacks.


Archive, Citation & Indexing:

More archive, citation, & indexing...

Creative Commons License

This site is licensed under a Creative Commons Attribution 4.0 International License