Effect of post-training meals on blood glucose and blood pressure in young soccer athletes: Intervention and correlational study
DOI:
https://doi.org/10.21831/jk.v13i1.77883Keywords:
athletes, blood pressure, carbohydrate, glucose, soccerAbstract
Macronutrient content of post-exercise meal is a fundamental for achieving optimal recovery following exercise training. This study aimed to analyze the effects of a high-fat meal consumed after training on blood glucose and pressure levels in young male soccer athletes. Furthermore, examining the relationship among body composition variables was a secondary objective. A pre-post intervention study was conducted with 34 male soccer athletes (age: 16 ± 0.8 years). Participants consumed a high-fat meal (-45% of total intake 1061 kcal) immediately after strenuous training. Blood samples were collected at baseline, immediately post-training, and 1 h post-training to assess trends in blood glucose and pressure levels. Bioelectrical impedance analysis (BIA) was used to measure participant characteristics. Statistical analysis was performed using one-way repeated measures ANOVA followed by post hoc Bonferroni tests to determine significant differences between groups. Pearson correlation analysis was conducted to examine the relationships among the body composition variables. The average skeletal muscle mass and body fat percentage were approximately 59% and 24.6%, respectively. Glucose levels remained unchanged immediately after training but increased significantly by ~17% (p < 0.001) 1 h later. Systolic blood pressure (SBP) decreased by ~5% (p = 0.03) at 1 h post-training, while diastolic blood pressure (DBP) exhibited minimal change (p = 0.06). A correlation analysis indicated an inverse relationship between body mass and skeletal muscle mass, contrasting with the linear relationship between body mass and body fat. The results suggest that a high-fat meal consumed after exercise may lead to an increase in glucose levels 1 h post-exercise. The slight reduction in SBP observed 1 h post-training may represent a normal physiological response to exercise. Since the current study did not have the exercise-only group, further research is needed to confirm whether the change of the blood glucose levels was mainly from the diet.
References
Areta, J. L., Iraki, J., Owens, D. J., Joanisse, S., Philp, A., Morton, J. P., & Hallén, J. (2020). Achieving energy balance with a high-fat meal does not enhance skeletal muscle adaptation and impairs glycaemic response in a sleep-low training model. Exp Physiol, 105(10), 1778-1791. https://doi.org/10.1113/ep088795
Beelen, M., Burke, L. M., Gibala, M. J., & van Loon, L. J. (2010). Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab, 20(6), 515-532. https://doi.org/10.1123/ijsnem.20.6.515
Bergman, M., Manco, M., Satman, I., Chan, J., Schmidt, M. I., Sesti, G., Vanessa Fiorentino, T., Abdul-Ghani, M., Jagannathan, R., Kumar Thyparambil Aravindakshan, P., Gabriel, R., Mohan, V., Buysschaert, M., Bennakhi, A., Pascal Kengne, A., Dorcely, B., Nilsson, P. M., Tuomi, T., Battelino, T.,…Tuomilehto, J. (2024). International Diabetes Federation Position Statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res Clin Pract, 209. https://doi.org/10.1016/j.diabres.2024.111589
Burke, L. M., Hawley, J. A., Wong, S. H. S., & Jeukendrup, A. E. (2011). Carbohydrates for training and competition. J Sports Sci, 29, S17-S27. https://doi.org/10.1080/02640414.2011.585473
Campbell, H. A., Akerman, A. P., Kissling, L. S., Prout, J. R., Gibbons, T. D., Thomas, K. N., & Cotter, J. D. (2022). Acute physiological and psychophysical responses to different modes of heat stress. Exp Physiol, 107(5), 429-440. https://doi.org/10.1113/ep089992
Cornelissen, V. A., & Fagard, R. H. (2005). Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension, 46(4), 667-675. https://doi.org/10.1161/01.Hyp.0000184225.05629.51
Cornelissen, V. A., & Smart, N. A. (2013). Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc, 2(1), e004473. https://doi.org/10.1161/jaha.112.004473
Endo, M. Y., Fujihara, C., Miura, A., Kashima, H., & Fukuba, Y. (2016). Effects of meal ingestion on blood pressure and regional hemodynamic responses after exercise. J Appl Physiol (1985), 120(11), 1343-1348. https://doi.org/10.1152/japplphysiol.00842.2015
Forjaz, C. L., Matsudaira, Y., Rodrigues, F. B., Nunes, N., & Negrão, C. E. (1998). Post-exercise changes in blood pressure, heart rate and rate pressure product at different exercise intensities in normotensive humans. Braz J Med Biol Res, 31(10), 1247-1255. https://doi.org/10.1590/s0100-879x1998001000003
Fox, A. K., Kaufman, A. E., & Horowitz, J. F. (2004). Adding fat calories to meals after exercise does not alter glucose tolerance. J Appl Physiol (1985), 97(1), 11-16. https://doi.org/10.1152/japplphysiol.01398.2003
Guidry, M. A., Blanchard, B. E., Thompson, P. D., Maresh, C. M., Seip, R. L., Taylor, A. L., & Pescatello, L. S. (2006). The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am Heart J, 151(6), 1322.e1325-1322.e1312. https://doi.org/https://doi.org/10.1016/j.ahj.2006.03.010
Herberts, T., Slater, G. J., Farley, A., Hogarth, L., Areta, J. L., Paulsen, G., & Garthe, I. (2023). Protocol standardization may improve precision error of InBody 720 body composition analysis. Int J Sport Nutr Exerc Metab, 33(4), 222-229. https://doi.org/10.1123/ijsnem.2022-0219
Holdsworth, D. A., Cox, P. J., Kirk, T., Stradling, H., Impey, S. G., & Clarke, K. (2017). A ketone ester drink increases postexercise muscle glycogen synthesis in humans. Med Sci Sports Exerc, 49(9), 1789-1795. https://doi.org/10.1249/mss.0000000000001292
Ivy, J. L., Ding, Z., Hwang, H., Cialdella-Kam, L. C., & Morrison, P. J. (2008). Post exercise carbohydrate-protein supplementation: Phosphorylation of muscle proteins involved in glycogen synthesis and protein translation. Amino Acids, 35(1), 89-97. https://doi.org/10.1007/s00726-007-0620-2
Katayama, K., & Saito, M. (2019). Muscle sympathetic nerve activity during exercise. J Physiol Sci, 69(4), 589-598. https://doi.org/10.1007/s12576-019-00669-6
Kerksick, C. M., Arent, S., Schoenfeld, B. J., Stout, J. R., Campbell, B., Wilborn, C. D., Taylor, L., Kalman, D., Smith-Ryan, A. E., Kreider, R. B., Willoughby, D., Arciero, P. J., VanDusseldorp, T. A., Ormsbee, M. J., Wildman, R., Greenwood, M., Ziegenfuss, T. N., Aragon, A. A., & Antonio, J. (2017). International society of sports nutrition position stand: Nutrient timing. J Int Soc Sports Nutr, 14, 33. https://doi.org/10.1186/s12970-017-0189-4
Laukkanen, J. A., & Kurl, S. (2012). Blood pressure responses during exercise testing—Is up best for prognosis? Ann Med, 44(3), 218-224. https://doi.org/10.3109/07853890.2011.560180
Levenhagen, D. K., Gresham, J. D., Carlson, M. G., Maron, D. J., Borel, M. J., & Flakoll, P. J. (2001). Postexercise nutrient intake timing in humans is critical to recovery of leg glucose and protein homeostasis. Am J Physiol Endocrinol Metab, 280(6), E982-993. https://doi.org/10.1152/ajpendo.2001.280.6.E982
Mardiana, M., Kartini, A., Sutiningsih, D., Suroto, S., & Muhtar, M. S. (2023). Literature review: Nutrition supplementation for muscle fatigue in athletes. Jurnal Keolahragaan, 11(1), 10-23. https://doi.org/10.21831/jk.v11i1.46486
Monahan, K. D. (2007). Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol, 293(1), R3-R12. https://doi.org/10.1152/ajpregu.00031.2007
Monahan, K. D., Dinenno, F. A., Tanaka, H., Clevenger, C. M., DeSouza, C. A., & Seals, D. R. (2000). Regular aerobic exercise modulates age-associated declines in cardiovagal baroreflex sensitivity in healthy men. J Physiol, 529 Pt 1(Pt 1), 263-271. https://doi.org/10.1111/j.1469-7793.2000.00263.x
Moore, D. R. (2015). Nutrition to support recovery from endurance exercise: Optimal carbohydrate and protein replacement. Curr Sports Med Rep, 14(4), 294-300. https://doi.org/10.1249/jsr.0000000000000180
Murray, B., & Rosenbloom, C. (2018). Fundamentals of glycogen metabolism for coaches and athletes. Nutr Rev, 76(4), 243-259. https://doi.org/10.1093/nutrit/nuy001
Nakamura, K., Fujiwara, T., Hoshide, S., Ishiyama, Y., Taki, M., Ozawa, S., & Kario, K. (2021). Differences in exercise-induced blood pressure changes between young trained and untrained individuals. J Clin Hypertens (Greenwich), 23(4), 843-848. https://doi.org/10.1111/jch.14177
Poffé, C., Ramaekers, M., Van Thienen, R., & Hespel, P. (2019). Ketone ester supplementation blunts overreaching symptoms during endurance training overload. J Physiol, 597(12), 3009-3027. https://doi.org/10.1113/jp277831
Richter, E. A., Derave, W., & Wojtaszewski, J. F. (2001). Glucose, exercise and insulin: Emerging concepts. J Physiol, 535(Pt 2), 313-322. https://doi.org/10.1111/j.1469-7793.2001.t01-2-00313.x
Shambrook, P., Kingsley, M. I., Wundersitz, D. W., Xanthos, P. D., Wyckelsma, V. L., & Gordon, B. A. (2018). Glucose response to exercise in the post-prandial period is independent of exercise intensity. Scand J Med Sci Sports, 28(3), 939-946. https://doi.org/10.1111/sms.12999
Shin, Y., Park, S., & Choue, R. (2009). Comparison of time course changes in blood glucose, insulin and lipids between high carbohydrate and high fat meals in healthy young women. Nutr Res Pract, 3(2), 128-133. https://doi.org/10.4162/nrp.2009.3.2.128
Vandoorne, T., De Smet, S., Ramaekers, M., Van Thienen, R., De Bock, K., Clarke, K., & Hespel, P. (2017). Intake of a ketone ester drink during recovery from exercise promotes mTORC1 signaling but not glycogen resynthesis in human muscle. Front Physiol, 8, 310. https://doi.org/10.3389/fphys.2017.00310
Wielemborek-Musial, K., Szmigielska, K., Leszczynska, J., & Jegier, A. (2016). Blood pressure response to submaximal exercise test in adults. Biomed Res Int, 2016, 5607507. https://doi.org/10.1155/2016/5607507
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Luthfia Dewi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Keolahragaan by http://journal.uny.ac.id/index.php/jolahraga/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.