Pengaruh konsentrasi asam sulfat pada sintesis nanokristal selulosa bonggol jagung

Nadiyya Nur Maulidanti, Program Studi Kimia, FMIPA Universitas Garut, Indonesia
Abdul Malik Nurdin, Program Studi Kimia, FMIPA Universitas Garut, Indonesia
Ai Fifih Luthfiyah, Program Studi Kimia, FMIPA Universitas Garut, Indonesia
Astri Senania, Program Studi Kimia, FMIPA Universitas Garut, Indonesia

Abstract


Penelitian ini bertujuan untuk mengidentifikasi pengaruh asam sulfat pada sintesis nanokristal selulosa dari bonggol jagung. Isolasi selulosa dari bonggol jagung dilakukan dengan dua tahap yaitu delignfikasi yang dengan menggunakan NaOH dan bleaching dengan NaOCl. Sintesis nanokristalin selulosa dilakukan dengan menggunakan metode hidrolisis asam sulfat dengan variasi konsentrasi pada suhu 45℃ selama 120 menit. Nanokristalin yang diperoleh dikarakterisasasi nilai kristalinitas dan ukuran kristal menggunakan analisis XRD dan identifikasi gugus fungsi dengan menggunakan FTIR. Hasil penelitian menunjukan asam sulfat dapat mempengaruhi hasil sintesis dengan teridentifikasi adanya gugus S=O pada permukaan karena adanya perekatan gugus dari H2SO4. Nilai kristalinitas selulosa terbesar diperoleh pada konsentrasi asam sulfat 60% menghasilkan nanokristal selulosa dengan nilai kristalinas sebesar 89,63%, sedangkan  ukuran nanokristal terkecil (0,88 nm) dapat diperoleh pada konsentrasi 55%.

Effect of sulfuric acid concentration on the synthesis of cellulose nanocrystals of corncob

This study aimed to identify the effect of sulfuric acid on the synthesis of cellulose nanocrystals from corn cob. Cellulose isolation from corn cob was carried out in two stages: delignification using NaOH and bleaching with NaOCl. Cellulose nanocrystals were synthesized using sulfuric acid hydrolysis with varying concentrations at 45°C for 120 minutes. The obtained nanocrystals were characterized for crystallinity and crystal size using X-ray diffraction (XRD) analysis, and functional groups were identified using Fourier-transform infrared spectroscopy (FTIR). The results indicate that sulfuric acid affects the synthesis outcome, as evidenced by the presence of S=O groups on the surface due to the bonding of H2SO4 groups. The highest cellulose crystallinity was achieved at a sulfuric acid concentration of 60%, resulting in cellulose nanocrystals with a crystallinity value of 89.63%. The smallest nanocrystal size (0.88 nm) was obtained at a concentration of 55%.


Keywords


bonggol jagung, hidrolisis asam, nanokristal selulosa

Full Text:

PDF

References


Abouzeid, R. E., Khiari, R., El-Wakil, N., & Dufresne, A. (2019). Current state and new trends in the use of cellulose nanomaterials for wastewater treatment. Biomacromolecules, 20(2), 573-597. https://doi.org/10.1021/acs.biomac.8b00839

Di Giorgio, L., Martín, L., Salgado, P. R., & Mauri, A. N. (2020). Synthesis and conservation of cellulose nanocrystals. Carbohydrate Polymers, 238, 116187. https://doi.org/ 10.1016/j.carbpol.2020.116187

Ditzel, F. I., Prestes, E., Carvalho, B. M., Demiate, I. M., & Pinheiro, L. A. (2017). Nanocrystalline cellulose extracted from pine wood and corncob. Carbohydrate Polymers, 157, 1577-1585. https://doi.org/10.1016/j.carbpol.2016.11.036

Fan, G.-Z., Wang, Y.-X., Song, G.-S., Yan, J.-T., & Li, J.-F. (2017). Preparation of microcrystalline cellulose from rice straw under microwave irradiation. Journal of Applied Polymer Science, 134(22). https://doi.org/10.1002/app.44901

Fatriasari, W., Masruchin, N., & Hermiati, E. (2019). Selulosa: Karakteristik dan pemanfaatannya. Penerbit BRIN.

Gallardo-Sánchez, M. A., Diaz-Vidal, T., Navarro-Hermosillo, A. B., Figueroa-Ochoa, E. B., Ramirez Casillas, R., Anzaldo Hernández, J., Rosales-Rivera, L. C., Soltero Martínez, J. F. A., García Enríquez, S., & Macías-Balleza, E. R. (2021). Optimization of the obtaining of cellulose nanocrystals from agave tequilana weber var. Azul Bagasse by acid hydrolysis. Nanomaterials, 11(2), 520. https://doi.org/10.3390/nano11020520

Heinze, T. (2016). Cellulose: Structure and Properties. In O. J. Rojas (Ed.), Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials (pp. 1–52). Springer International Publishing. https://doi.org/10.1007/12_2015_319

Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S. Y., & Sheltami, R. M. (2012). Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 19(3), 855–866. https://doi.org/10.1007/s10570-012-9684-6

Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., & Dufresne, A. (2017). Methods for Extraction of Nanocellulose from Various Sources. Handbook of Nanocellulose and Cellulose Nanocomposites, 1, 1-49. https://onlinelibrary.wiley.com/doi/10.1002/ 9783527689972.ch1

Kuang, Y., Chen, C., Pastel, G., Li, Y., Song, J., Mi, R., Kong, W., Liu, B., Jiang, Y., Yang, K., & Hu, L. (2018). Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Advanced Energy Materials, 8(33), 1802398. https://doi.org/10.1002/aenm.201802398

Marett, J., Aning, A., & Foster, E. J. (2017). The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis. Industrial Crops and Products, 109, 869-874. https://doi.org/10.1016/j.indcrop.2017.09.039

Sabaruddin, F. A., Paridah, M. T., Sapuan, S. M., Ilyas, R. A., Lee, S. H., Abdan, K., Mazlan, N., Roseley, A. S. M., & Abdul Khalil, H. P. S. (2020). The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polymers, 13(1), 116. https:// doi.org/10.3390/polym13010116

Saragih, D. Y. E., Natalia, H., Pradityo, P. S., & Astuti, M. (2023). Pemanfaatan Jagung lokal oleh industri pakan tahun 2022 (Vol. 4). Direktorat Pakan Direktorat Jenderal Peternakan dan Kesehatan Hewan Kementerian Pertanian RI.

Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and characterization of porous microcrystalline cellulose from corncob. Industrial Crops and Products, 151, 112457. https://doi.org/10.1016/j.indcrop.2020.112457

Smyth, M., García, A., Rader, C., Foster, E. J., & Bras, J. (2017). Extraction and process analysis of high aspect ratio cellulose nanocrystals from corn (Zea mays) agricultural residue. Industrial Crops and Products, 108, 257-266. https://doi.org/10.1016/ j.indcrop.2017.06.006

Tang, Y., Yang, S., Zhang, N., & Zhang, J. (2014). Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose, 21(1), 335-346. https://doi.org/10.1007/s10570-013-0158-2

Thakur, M., Sharma, A., Ahlawat, V., Bhattacharya, M., & Goswami, S. (2020). Process optimization for the production of cellulose nanocrystals from rice straw derived α-cellulose. Materials Science for Energy Technologies, 3, 328-334. https://doi.org/ 10.1016/j.mset.2019.12.005

Wang, J., Wang, L., Gardner, D., Shaler, S., & Cai, Z. (2021). Towards a cellulose-based society: Opportunities and challenges. Cellulose, 28. https://doi.org/10.1007/s10570-021-03771-4

Zeni, M., Favero, D., Pacheco, K., & Grisa MC, A. (2015). Preparation of microcellulose (Mcc) and nanocellulose (Ncc) from eucalyptus kraft ssp pulp. Polymer Sciences, 1(1), 1-5.




DOI: https://doi.org/10.21831/jps.v1i1.67993

Refbacks





Copyright (c) 2024 Jurnal Penelitian Saintek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 p-ISSN: 1412-3991 || e-ISSN: 2528-7036

Indexed by:

     

View My Stats