Analysis of CVT (continuously variable transmission) and the influence of variations on the motorcycle
Abstract
This study was aimed to determine the working principle, troubleshooting, and the influence of CVT roller weight variations on Suzuki Nex-FI 2014 motorcycles. This research was conducted by analyzing and comparing the measurement results for each CVT component. This study used an experimental research by holding the throttle at 3,250 rpm. Once steady state is reached, the throttle is rotated up to 10,000 rpm. The results of the troubleshooting analysis and measurement of drive belt wear were from the standard size of 19.50 mm to 18.00 mm. The usage tolerance limit is 18.60 mm. As for the results of the roller variation test using a lighter weight namely 8 and 9 grams. The results show that the maximum results are achieved at low and medium rotational speeds, compared to the use of 11 gr (standard) roller. The weakness of the lighter roller (8 & 9 grams) is that they only get good acceleration and torque at low revs while at high rotation speed is less than the maximum. The use of standard (11 gram) roller has less maximum acceleration and torque but produces maximum power.
Keywords
Full Text:
PDFReferences
Abidin, A., & Pamungkas, N. S. (2020). Pengaruh variasi massa roller CVT terhadap karakteristik performa motor matic 110 Cc dan 150 Cc menggunakan dynamometer. J-proteksion: Jurnal Kajian Ilmiah dan Teknologi Teknik Mesin, 4(13), 1-6. https://doi.org/10.32528/jp.v7i1.8388.
Aher, S. S., & Shelke, P. R. S. (2018). Cone Ring Traction Drive. International Research Journal of Engineering and Technology (IRJET), 5(1), 1293-1296.
Akbar, R., Albanjari, M. A., & Setiawan, F. W. (2022). The effect of various weight and form roller of continuously variable transmission to 108cc scooter machine performance. Jurnal Mesin Industri & Otomotif, 3(July), 1-7.
Akhmadi, A. N., & Usman, M. K. (2021). Analisis pengaruh berat roller standard dan racing pada sistem CVT terhadap RPM sepeda motor Honda Beat PGM-FI tahun 2015. Jurnal Rekayasa Material, Manufaktur Dan Energi, 4(1), 22-31.
Anugrah, R. A. (2019). Experimental study on variation of tilted angles toward acoustic power of thermoacoustic engine. Journal of Physics: Conference Series, 1381(1). https://doi.org/10.1088/1742-6596/1381/1/012066.
Arta, I. W. Y., Arifin, Z., & Yudantoko, A. (2020). The effect of CVT rollers weight on power and torque of honda Vario 125 engine in garuda hybrid car 2017. Journal of Physics: Conference Series, 1700(1). https://doi.org/10.1088/1742-6596/1700/1/012064
Bertini, L., Carmignani, L., & Frendo, F. (2014). Analytical model for the power losses in rubber V-belt continuously variable transmission (CVT). Mechanism and Machine Theory, 78, 289-306. https://doi.org/10.1016/j.mechmachtheory.2014.03.016
Bhirud, J. P., Bodke, J. N., & Rane, B. S. (2016). Half toroid CVT system. International Research Journal of Engineering and Technology (IRJET), 03(08), 626-630.
Dai, Z. C. (2021). Performance verification test of coaxial centrifugal clutch for the motorcycle transmission system. Journal of Physics: Conference Series, 2141(1). https://doi.org/10.1088/1742-6596/2141/1/012008.
Grzegożek, W., Szczepka, M., & Adam, K. (2017). The analysis of applying CVT gear ratio rate control for scooter efficiency improvement. Asian Journal of Applied Science and Engineering, 6(2), 73-87.
Jatira, J., Rajab, D. A., Anwar, C., & Lukman, R. A. H. (2022, February). Analysis of the tilt angle of the pulley driver on traction and acceleration performance. International Conference on Government Education Management and Tourism, 1(1).
Kaushik, K. (2015). Continuous Variable Transmission (CVT) explained. International Journal of Advances in Engineering Research, 10, 25-43. https://www.youtube.com/watch?v=3yRskb0BYwE.
La Battaglia, V., Giorgetti, A., Marini, S., Arcidiacono, G., & Citti, P. (2022). Kinematic analysis of v-belt CVT for efficient system development in motorcycle applications. Machines, 10(1). https://doi.org/10.3390/machines10010016
Li, C., Li, H., Li, Q., Zhang, S., & Yao, J. (2019). Modeling, kinematics, and traction performance of no-spin mechanism based on the roller-disk type of traction drive continuously variable transmission. Mechanism and Machine Theory, 133, 278-294. https://doi.org/10.1016/j.mechmachtheory.2018.11.017.
Milazzo, M., Moretti, G., Burchianti, A., Mazzini, D., Oddo, C. M., Stefanini, C., & Fontana, M. (2020). A passively regulated full-toroidal continuously variable transmission. Meccanica, 55(1), 211-226. https://doi.org/10.1007/s11012-019-01096-y.
Nofendri, Y., & Christian, E. (2020). Pengaruh berat roller terhadap performa mesin Yamaha Mio Soul 110 Cc yang menggunakan jenis transmisi otomatis (CVT). Jurnal Kajian Teknik Mesin, 5(1), 58-65. https://doi.org/10.52447/jktm.v5i1.3991.
Permana, K. N. C., & Raharjo, W. D. (2020). Pengaruh penggunaan variasi berat roller dan pegas pully sekunder pada CVT (Continuously variable transmission) terhadap daya, torsi, dan konsumsi bahan bakar Honda Beat PGM-FI Tahun 2013. Automotive Science and Education Journal, 9(2), 30-35. http://journal.unnes.ac.id/sju/index.php/asej.
Salam, R. (2017). Pengaruh Penggunaan variasi berat roller pada sistem CVT (Continuously Variable Transmission) terhadap performa sepeda motor honda beat 110cc tahun 2009. Jurnal Teknik Mesin, 7(02).
Supriyo, B, Ariyono, S., & Sihono, S. (2021). The electronic system of rubber belt electro-mechanical continuously variable transmission for motorcycle applications. IOP Conference Series: Materials Science and Engineering, 1108(1), 012011. https://doi.org/10.1088/1757-899x/1108/1/012011.
Supriyo, B., Ariyono, S., Tjahjono, B., & Sumiyarso, B. (2019). Electro-mechanical transmission ratio shifter of rubber belt continuously variable transmission for motorcycle applications. Journal of Physics: Conference Series, 1273(1). https://doi.org/10.1088/1742-6596/1273/1/012071.
Vignesh, J., Calcuttawala, A. K., Quazi, M. S., & Thomas, T. K. (2016). A study of electronically controlled actuation mechanism for belt-driven CVTs in gearless two wheelers. International Journal of Aerospace and Mechanical Engineering, 3(4), 36-40.
Widodo, E., Mulyadi, M., Iswanto, I., Tjahjanti, P. H., & Anggara, S. B. M. (2019). Effect of pulley primary angle variation and roller 11 grams on 110 ccs Scoopy injection engine. Journal of Physics: Conference Series, 1402(4). https://doi.org/10.1088/1742-6596/1402/4/044039.
DOI: https://doi.org/10.21831/jps.v2i27.53582
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Jurnal Penelitian Saintek
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
p-ISSN: 1412-3991 || e-ISSN: 2528-7036
Indexed by:
View My Stats