KEANEKARAGAMAN ORGANISME PADA RHIZOSFER GULMA SIAM DI LAHAN VULKANIK, PESISIR, DAN KARST

Tien Aminatun, Universitas Negeri Yogyakarta, Indonesia
Siti Umniyatie, Universitas Negeri Yogyakarta, Indonesia
Anna Rakhmawati, Universitas Negeri Yogyakarta, Indonesia
Aji Suhandy, Universitas Negeri Yogyakarta, Indonesia
Nrangwesthi Widyaningrum, Universitas Negeri Yogyakarta, Indonesia
Kurnia Cahyani, Universitas Negeri Yogyakarta, Indonesia

Abstract


Penelitian ini bertujuan untuk membandingkan kondisi edafik, hubungan antara kondisi edafik dan keanekaragaman organisme tanah, serta perbedaan keanekaragaman organisme tanah pada berbagai ekosistem rhizosfer gulma Siam (Chromolaena odorata) yang tumbuh di lahan vulkanik, pesisir, dan karst. Penelitian dilakukan dengan mengambil sampel tanah dari ekosistem rhizosfer gulma Siam di lahan vulkanik, karst, dan pesisir Daerah Istimewa Yogyakarta; mengamati komposisi organisme tanah di laboratorium, yaitu collembola, nematoda, dan mikoriza. Hasil penelitian menunjukkan bahwa tanah pada rhizosfer gulma Siam yang tumbuh di lahan karst menunjukkan tingkat kesuburan tertinggi yang ditunjukkan oleh kandungan N, K, dan C-organik tanah, sedangkan tanah pesisir memiliki kandungan P tertinggi. Tekstur tanah pada rhizosfer gulma Siam lebih berpengaruh terhadap keanekaragaman organisme tanah dibandingkan kandungan hara tanah dan sifat tanah lainnya yang diteliti. Keragaman organisme tanah rhizosfer gulma Siam lebih besar di lahan pesisir dibandingkan di lahan karst dan vulkanik. Implikasi dari hasil tersebut adalah bahwa tanah dengan tekstur berpasir akan lebih bermanfaat bagi pertumbuhan gulma Siam dengan keanekaragaman organisme rhizosfer yang lebih tinggi.

ORGANISM DIVERSITY IN THE RHIZOSPHERE OF SIAM WEEDS IN VOLCANIC, COASTAL AND KARST LAND

The research aims to compare the edaphic condition, the relationship between the edaphic condition and soil organism diversity, and the differences of soil organism diversity in different rhizosphere ecosystems of Siam weed growing in volcanic, coastal and karts areas. The research was conducted by taking soil samples from the Siam weed rhizosphere ecosystems in volcanic, karst and coastal areas of the Special Region of Yogyakarta and observing the composition of the soil organisms in the laboratory, including collembola, nematode, and mycorrhiza. The results find that soil from rhizosphere of Siam weed growing in karst area shows the highest level of fertility indicated by the N, K, and C-organic contents of the soil, whereas soil from coastal area has the highest P content. Soil texture in the rhizosphere of Siam weed has more effect on the diversity of soil organisms than the soil nutrient content and other soil properties investigated. The diversity of soil organisms of Siam weed rhizosphere is greater in coastal area than those in karst and volcanic areas. The implication of the results is that soil with a sandy texture will be more beneficial for the growth of Siam weed with a higher diversity of rhizosphere organisms


Keywords


Chromolaena odorata, kondisi edafik, lahan karst, rhizosfer

Full Text:

PDF

References


Adeleke, R., Nwangburuka, C., & Oboirien, B. (2017). Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108, 393-406. https://doi.org/10.1016/j.sajb.2016.09.002.

Brundrett, M., Bougher, N., Dell, B., Grove, T., & Malajczuk, N. (1996). Working with mycorrhizas in forestry and agriculture. Dalam Australian Centre for International Agricultural Research, 32. Diunduh dari https://www.aciar.gov.au/publication/working-mycorrhizas-forestry-and-agriculture.

Buendia, L., Wang, T., Girardin, A., & Lefebvre, B. (2016). The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytologist, 210(1), 184-195. https://doi.org/10.1111/nph.13753.

Castoldi, G., dos Reis, J. G., Pivetta, L. A., & Rosolem, C. A. (2013). Dinǎmica do nitrogěnio no solo após a dessecação de brachiarias. Revista Brasileira de Ciencia Do Solo, 37(6), 1620-1627. https://doi.org/10.1590/S0100-06832013000600018.

Chau, J. F., Bagtzoglou, A. C., & Willig, M. R. (2011). The effect of SOil texture on richness and diversity of bacterial communities. Environmental Forensics, 12, 333-341. https://doi.org/10.1080/15275922.2011.622348.

Dropkin, V. H. (1992). Pengantar nema-tologi tumbuhan. (Supratoyo, Terj.). Mada University Press.

Fachrul, M. F. (2008). Metode sampling bioteknologi. Bumi Aksara.

Flores-Gallegos, A. C., & Nava-Reyna, E. (2018). Plant growth-promoting microbial enzymes. Enzymes in food biotechnology: Production, applica-tions, and future prospects. https://doi.org/10.1016/B978-0-12-813280-7.00030-X.

Gebremikael, M. T., Steel, H., Bert, W., Maenhout, P., Sleutel, S., & De Neve, S. (2015). Quantifying the contribution of entire free-living nematode communities to carbon mineralization under contrasting C and N availability. PLoS ONE, 10(9), 1-17. https://doi.org/10.1371/journal.pone.0136244

Graf, M., Bönn, M., Feldhahn, L., Kurth, F., Grams, T. E. E., Herrmann, S., Tarkka, M., Buscot, F., & Scheu, S. (2019). Collembola interact with mycorrhizal fungi in modifying oak morphology, C and N incorporation and transcriptomics. Royal Society Open Science, 6(3). https://doi.org/10.1098/rsos.181869.

Gregory, P. J. (2006). Roots, rhizosphere and soil: The route to a better understanding of soil science? Europian Journal of Soil Science, February(57), 2-12. https://doi.org/10.1111/j.1365-2389.2005.00778.x.

Guerra, C. A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M. C., Maestre, F. T., Delgado-Baquerizo, M., Buscot, F., Overmann, J., Patoine, G., Phillips, H. R. P., Winter, M., Wubet, T., Küsel, K., Bardgett, R. D., Cameron, E. K., … Eisenhauer, N. (2020). Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11(1), 1-13. https://doi.org/10.1038/s41467-020-17688-2.

Husamah, H., Rohman, F., & Sutomo, H. (2016). Struktur komunitas collembola pada tiga tipe habitat sepanjang daerah aliran sungai Brantas Hulu Kota Batu. Bioedukasi, 9(1), 45-50. https://doi.org/10.20961/bioedukasi-uns.v9i1.3886.

Husna, Budi, S. W., Mansur, I., & Kusmana, D. C. (2015). Diversity of arbuscular mycorrhizal fungi in the growth habitat of Kayu Kuku (Pericopsis mooniana Thw.) in Southeast Sulawesi. Pakistan Journal of Biological Sciences, 18(1), 1-10. https://doi.org/10.3923/pjbs.2015.1.10.

Illig, J., Norton, R. A., Scheu, S., & Maraun, M. (2010). Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Experimental and Applied Acarology, 52(1), 49-62. https://doi.org/10.1007/s10493-010-9348-x.

Irshad, U., & Yergeau, E. (2018). Bacterial subspecies variation and nematode grazing change P dynamics in the wheat rhizosphere. Frontiers in Microbiology, 9(SEP), 1-11. https://doi.org/10.3389/fmicb.2018.01990.

Kanfra, X., Liu, B., Beerhues, L., Sørensen, S. J., & Heuer, H. (2018). Free-living nematodes together with associated microbes play an essential role in apple replant disease. Frontiers in Plant Science, 9(November), 1-13. https://doi.org/10.3389/fpls.2018.01666

Kartika, E., Duaja, M. D., & Gusniwati. (2019). Diversity of Arbuscular Mycorrhizal Fungi from Liberica Tungkal Jambi Coffee plant rhizosphere on peatland. IOP Conference Series: Earth and Environmental Science, 391(1). https://doi.org/10.1088/1755-1315/391/1/012058

Ke, X., Yang, Y., Yin, W., & Xue, L. (2004). Effects of low pH environment on the collembolan Onychiurus yaodai. Pedobiologia, 48, 545-550. https://doi.org/10.1016/j.pedobi.2004.07.001.

Kesaulya, H., Baharuddin, Zakaria, B., & Syaiful, S. A. (2015). Isolation and Phy-siological Characterization of PGPR from Potato Plant Rhizosphere in Medium Land of Buru Island. Procedia Food Science, 3, 190–199. https://doi.org/10.1016/j.profoo.2015.01.021

Kolesnikova, A. A., Baturina, M. A., Shadrin, D. M., Konakova, T. N., & Taskaeva, A. A. (2019). New records of lumbricidae and collembola in anthropogenic soils of east European tundra. ZooKeys, 2019(885), 15–25. https://doi.org/10.3897/zookeys.885.37279

Lehmann, A., Zheng, W., & Rillig, M. C. (2017). Soil biota contributions to soil aggregation. Nat Ecol Evol., 1(12), 1828-1835. https://doi.org/10.1038/s41559-017-0344-y.Soil.

Leinaas, H. P., Bengtsson, J., Janion-Scheepers, C., & Chown, S. L. (2015). Indirect effects of habitat disturbance on invasion: Nutritious litter from a grazing resistant plant favors alien over native Collembola. Ecology and Evolution, 5(16), 3462-3471. https://doi.org/10.1002/ece3.1483.

Liu, W., Zhang, J., Norris, S. L., & Murray, P. J. (2016). Impact of grassland reseeding, herbicide spraying and ploughing on diversity and abundance of soil arthropods. Frontiers in Plant Science, 7(AUG2016), 1-9. https://doi.org/10.3389/fpls.2016.01200

Liu, Y., Wang, L., He, R., Chen, Y., Xu, Z., Tan, B., Zhang, L., Xiao, J., Zhu, P., Chen, L., Guo, L., & Zhang, J. (2019). Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-47072-0.

Mai, W. F., & Lyon, H. H. (1975). Pictorial key to genera of plant-parasitic nematodes (4th ed.). Cornell University Press.

Maillet, F., Poinsot, V., André, O., Puech-Pagés, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E. A., Driguez, H., Bécard, G., & Dénarié, J. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469(7328), 58-64. https://doi.org/10.1038/nature09622.

Marizal, S., Muzakir, & Syariyah, A. (2017). The diversity of Arbuscular Mycorrhiza Fungus (AMF) indigenous in peanuts (Arachis Hypogea L) rhizosphere under different elevation. Journal of Tropical Soils, 21(2), 109-114. https://doi.org/10.5400/jts.2016.v21i2.109-114.

Masria. (2008). Peranan Mikoriza Vesikular Arbuskular (MVA) untuk meningkatkan resistensi tanaman terhadap cekaman kekeringan dan ketersediaan P pada lahan kering. Partner, 15(1), 48-56. https://doi.org/http://dx.doi.org/ 10.35726/jp.v15i1.110.

Miyata, K., Kozaki, T., Kouzai, Y., Ozawa, K., Ishii, K., Asamizu, E., Okabe, Y., Umehara, Y., Miyamoto, A., Kobae, Y., Akiyaman, K., Kaku, H., Nishizawa, Y., Shibuya, N., & Nakagawa, T. (2014). The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant and Cell Physiology, 55(11), 1864-1872. https://doi.org/10.1093/pcp/pcu129.

Mougi, A., & Kondoh, M. (2012). Diversity of interaction types and ecological community stability. Science, 337(6092), 349-351. https://doi.org/10.1126/science.1220529.

Nuzzo, A., De Martino, A., Di Meo, V., & Piccolo, A. (2018). Potential alteration of iron–humate complexes by plant root exudates and microbial siderophores. Chemical and Biological Technologies in Agriculture, 5(1). https://doi.org/10.1186/s40538-018-0132-1.

Rasmann, S., Ali, J. G., Helder, J., & van der Putten, W. H. (2012). Ecology and evolution of soil nematode chemotaxis. Journal of Chemical Ecology, 38(6), 615-628. https://doi.org/10.1007/s10886-012-0118-6.

Ravinndra, H., Sehgal, M., Narasimhamurthy, H. B., Jayalakshmi, K., & Khan, H. I. (2017). Rice root-knot nematode (Meloidogyne graminicola) an emerging problem. Int J Curr Microbiol App Sci, 6(8), 3143-3171. https://doi.org/10.20546/ijcmas.2017.608.376.

Rousk, J., Brookes, P. C., & Baath, E. (2009). Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Applied and Environmental Micro-biology, 75(6), 1589-1596. https://doi.org/10.1128/AEM.02775-8

Sarkar, U., Choudhary, B. K., & Sharma, B. K. (2014). Vascular Arbuscular Mycorrhizal ( VAM ) spore diversity and density across the soil of degraded forest and rubber plantation in Tripura, India. American-Eurasian J. Agric. & Environ. Sci., 14(10), 1080-1088. https://doi.org/10.5829/idosi.aejaes.2014.14.10.12432.

Schratzberger, M., Holterman, M., Van Oevelen, D., & Helder, J. (2019). A Worm’s World: Ecological Flexibility Pays off for Free-Living Nematodes in Sediments and Soils. BioScience, 69(11), 867-876. https://doi.org/10.1093/biosci/biz086.

Suamba, I. W., Wirawan, I. G. P., & Adiartayasa, W. (2014). Isolasi dan identifikasi Fungi Mikoriza Arbuskular (FMA) secara mikroskopis pada rhi-zosfer tanaman jeruk (Citrus Sp.) di Desa Kerta, Kecamatan Payangan, Kabupaten Gianyar. E-Jurnal Agroekoteknologi Tropika (Journal of Tropical Agroeco-technology), 3(4), 201-208.

Sun, X., Zhang, X., Zhang, S., Dai, G., Han, S., & Liang, W. (2013). Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PLoS ONE, 8(12), 1-8. https://doi.org/10.1371/journal.pone.0082468.

te Beest, M., Elschot, K., Olff, H., & Etienne, R. S. (2013). Invasion success in a marginal habitat: An experimental test of competitive ability and drought tolerance in chromolaena odorata. PLoS ONE, 8(8), e68274. https://doi.org/10.1371/journal.pone.0068274.

Treonis, A. M., Unangst, S. K., Kepler, R. M., Buyer, J. S., Cavigelli, M. A., Mirsky, S. B., & Maul, J. E. (2018). Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-20366-5.

Van den Hoogen, J., Geisen, S., Wall, D. H., Wardle, D. A., Traunspurger, W., de Goede, R. G. M., Adams, B. J., Ahmad, W., Ferris, H., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., Caixeta, L. D. B., Chen, X., Costa, S. R., Creamer, R., e Castro, J. M. D. C., ... Crowther, T. W. (2020). A global database of soil nematode abundance and functional group composition. Scientific Data, 7(1), 1-8. https://doi.org/10.1038/s41597-020-0437-3.

Vanhée, B., & Devigne, C. (2018). Differences in collembola species assemblages (Arthropoda) between spoil tips and surrounding environments are dependent on vegetation development. Scientific Reports, 8(1), 1-16. https://doi.org/10.1038/s41598-018-36315-1.

Wardani, D. K., Darmanti, S., & Budihastuti, R. (2018). Allelochemical effect of Ageratum conyzoides L. leaf extract on Soybean [Glycine max (L.) Merr. cv Grobogan] growth. Journal of Physics: Conference Series, 1025(1), 012044. https://doi.org/10.1088/1742-6596/1025/1/012044.

Zachariades, C., Day, M. D., Muniappan, R., & Reddy, G. V. P. (2009). Chromolaena odorata (L.) King and Robinson (Asteraceae). Dalam R. Muniappan, G. V. Reddy, & A. Raman (Eds.), Biological control of tropical weeds using arthropods. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511576348.008.




DOI: https://doi.org/10.21831/jps.v26i1.38754

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Jurnal Penelitian Saintek

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 p-ISSN: 1412-3991 || e-ISSN: 2528-7036

Indexed by:

     

View My Stats