Developing Artificial Neural Network Based on Visual Studio for Dance Assessment
Fatchul Arifin, Universitas Negeri Yogyakarta, Indonesia
Abstract
The dance assessment test still uses a manual system that tend to have frequent errors in the calculation for the final results thus it requires a system that accelerate the assessment process with an accurate result. This study aimed at: (1) designing an artificial neural network application based on visual studio for the dance assessment. (2) examining the performance of the artificial neural network application based on visual studio for the dance assessment. The design method consists of (1) system design (2) interface design (3) database design for artificial neural network system. (4) design of artificial neural network model. (5) programming (6) system testing. The design of visual studio artificial neural network application for the dance assessment has two stages: main program and supporting program. This research built a system by implementing visual studio and artificial neural network to assess dance examination which can give the final result to each participant directly. The application of the dance assessment can assess 3 types of dance with a training set of at least 10 pairs to undertake learning that produces the load to be used in the assessment. Besides assessing, this application can also delete, repair, and store data in the form of .xls. Based on the test results, it can be concluded that the application operates effectively for determining the final load, data input and data storage.
Keywords
Full Text:
PDFReferences
Arifin, Fatchul et al. 2010. Electrolarynx, esophagus and Normal Speech Classisification Using Gradient discent with momentum and learning rate, and Levenberg-Marquardt Algorithm. ICGC International Conference 2010, Yogyakarta 2-3 March 2010
F. Suhandi, Krisna. 2009. Prediksi Harga Saham Dengan Pendekatan Artificial Neural Network Menggunakan Algoritma Backpropagation. Accessed on 4 April 2015 from http://krisnafebrianto.blog.upi.edu/2009/06/27/prediksi-harga-saham-dengan-menggunakan-pendekatanartificial-neural-network-menggunakan-algoritma-backpropagation.html.
Hamalik, Oemar. 2011. Kurikulum dan Pembelajaran. Jakarta: PT Bumi aksara
Hariyanto, Didik. 2008. Pengembangan Sistem Informasi Akademik Mahasiswa Berbasis teknologi WAP (Wireless Aplication Protocol) di Jurusan Pendidikan Teknik Elektro FT UNY. Jurnal Pendidikan Teknologi dan Kejuruan. 17.2, 147-148
Haryanto, Moh Khairudin. 2012. Pengembangan Model Pembelajaran Jaringan Syaraf Tiruan Tipe Supervised Learning Sebagai Media Pembelajaran. Jurnal Pendidikan Teknologi dan Kejuruan. 21.1, 83-89
Hermawan, A. 2006. Jaringan Syaraf Tiruan Teori dan Aplikasi. Yogyakarta: Andi
Imron, Ali. 2012. Manajemen Peserta Didik Berbasis Sekolah. Jakarta: Bumi Aksara.
Irmawati, Dessy dan Yuniar Indrihapsari. 2014. Sistem Informasi Kearsipan Untuk Meningkatkan Kualitas Pelayanan. Jurnal Pendidikan Teknologi dan Kejuruan. 22.2, Halaman 136-147
Jayanti, Sherly et al. 2012. Sistem Pendukung Keputusan Seleksi Anggota Paduan Suara Dewasa Menggunakan Metode Fuzzy Mamdani. Kalimantan Tengah
Kusuma Dewi, Sri. 2010. Membangun Jaringan Syarat Tiruan Menggunakan MATLAB dan Excel Link. Yogyakarta: Graha Ilmu
Mulyadi. 2010. Evaluasi Pendidikan. Malang: UIN-MALIKI PRESS
Rohani, Ahmad. 2010. Pengelolaan Pengajaran (Sebuah Pengantar Menuju Guru Profesional). Jakarta: Rineka Cipta
Sukidal. 1999. Evaluasi Pengajaran. Bandar Lampung: Gunung Pesagi
Trianto. 2010. Mendesain Model-Model Pembelajaran Inovatif-Progresif. Jakarta: Kencana
DOI: https://doi.org/10.21831/jptk.v23i4.13800
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Jurnal Pendidikan Teknologi dan Kejuruan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Online (e-ISSN): 2477-2410 || Printed (p-ISSN): 0854-4735
Jurnal Pendidikan Teknologi Kejuruan by http://journal.uny.ac.id/index.php/jptk was distributed under a Creative Commons Attribution 4.0 International License.
View My StatsSupported by:
Social Media: