Development of Multi-Tier Diagnostic Tests for Primary Schools: A Systematic Literature Review

Hafizhah Rahmiati Auliya, Universitas Negeri Yogyakarta, Indonesia
Martha Christianti, Universitas Negeri Yogyakarta, Indonesia
Benny Hidayat, Universitas Negeri Yogyakarta, Indonesia

Abstract


The implementation of multi-tiered diagnostic tests is crucial for identifying and addressing student misconceptions in primary education. This study systematically reviews the development and application of these diagnostic tools in primary schools from 2019 to 2024. Following the PRISMA protocol, 26 studies were selected from an initial 178 records obtained from the Scopus database. The analysis highlights trends in test development, key content areas, and potential future applications in primary mathematics education. The findings emphasize the importance of tailored diagnostic tools for early identification of misconceptions and suggest directions for future research to enhance their effectiveness in educational assessments.

Keywords


multi-tier diagnostic test; student misconceptions; diagnostic tool; educational assessment; primary school mathematics

References


Anam, R. S., Widodo, A., Sopandi, W., & Wu, H.-K. (2019). Developing a five-tier diagnostic test to identify students’ misconceptions in science: an example of the heat transfer concepts. Elementary Education Online, 18(3), 1014–1029. https://doi.org/10.17051/ilkonline.2019.609690

Andariana, A., Zubaidah, S., Mahanal, S., & Suarsini, E. (2020). Identification of biology students’ misconceptions in human anatomy and physiology course through three-tier diagnostic test. Journal for the Education of Gifted Young Scientists, 8(3), 1071–1085. https://doi.org/10.17478/jegys.752438

Ariyani, A., & Rusilowati, A. (2023). Identification and remediation of misconceptions on thermodynamics law for students with interactive demonstration. In S. null, S. K., C. E., M. null, L. C.P., & A. S. (Eds.), AIP Conference Proceedings (Vol. 2614). American Institute of Physics Inc. https://doi.org/10.1063/5.0125922

Astuti, I. A. D., Bhakti, Y. B., & Prasetya, R. (2023). Android-based 4-tier physics test app to identify student misconception profiles. International Journal of Evaluation and Research in Education, 12(3), 1356–1363. https://doi.org/10.11591/ijere.v12i3.25536

Atmaca Aksoy, A. C., & Erten, S. (2022). A Four-tier Diagnostic Test To Determine Pre-service Science Teachers’ Misconception About Global Warming. Journal of Baltic Science Education, 21(5), 747–761. https://doi.org/10.33225/jbse/22.21.747

Austin-Tse, C. A., Jobanputra, V., Perry, D. L., Bick, D., Taft, R. J., Venner, E., Gibbs, R. A., Young, T., Barnett, S., Belmont, J. W., Boczek, N., Chowdhury, S., Ellsworth, K. A., Guha, S., Kulkarni, S., Marcou, C., Meng, L., Murdock, D. R., Rehman, A. U., … Rehm, H. L. (2022). Best practices for the interpretation and reporting of clinical whole genome sequencing. Npj Genomic Medicine, 7(1), 27. https://doi.org/10.1038/s41525-022-00295-z

Banawi, A., Sopandi, W., Kadarohman, A., & Solehuddin, M. (2022). Five-Tier Multiple-Choice Diagnostic Test Development: Empirical Evidences to Improve Students’ Science Literacy. https://doi.org/10.2991/assehr.k.220104.020

Bayuni, T. C., Sopandi, W., & Sujana, A. (2018). Identification misconception of primary school teacher education students in changes of matters using a five-tier diagnostic test. In A. S., M. R., K. D., J. A., R. L., R. R., H. L., Y. K., W. null, S. A., & N. E. (Eds.), Journal of Physics: Conference Series (Vol. 1013, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1013/1/012086

Budi Bhakti, Y., Agustina Dwi Astuti1, I., & Prasetya, R. (2022). Four-Tier Thermodynamics Diagnostic Test (4T-TDT) to Identify Student Misconception. KnE Social Sciences. https://doi.org/10.18502/kss.v7i14.11958

Clement, J. J., Brown, D. E., & Zietsman, A. (1989). Not All Preconceptions Are Misconceptions: Finding ‘Anchoring Conceptions’ for Grounding Instruction on Students’ Intuitions. International Journal of Science Education, 11(5), 554–565. https://doi.org/10.1080/0950069890110507

diSessa, A. A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10(2–3), 105–225. https://doi.org/10.1080/07370008.1985.9649008

Driver, R., & Easley, J. (1978). Pupils and Paradigms: a Review of Literature Related to Concept Development in Adolescent Science Students. Studies in Science Education, 5(1), 61–84. https://doi.org/10.1080/03057267808559857

Fikri, A. A., Hasanah, I. U., Ahsani, E. L. F., Hanik, E. U., & Musdalifah, M. (2023). Pre-service biology teacher’s misconception about ecological succession. In S. A., U. R., S. M., & P. F.G. (Eds.), AIP Conference Proceedings (Vol. 2595). American Institute of Physics Inc. https://doi.org/10.1063/5.0123819

Greca, I. M., & Moreira, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of physics. Science Education, 86(1), 106–121. https://doi.org/10.1002/sce.10013

Gurel, D. K., Eryilmaz, A., & McDermott, L. C. (2015). A Review and Comparison of Diagnostic Instruments to Identify Students’ Misconceptions in Science. EURASIA Journal of Mathematics, Science and Technology Education, 11(5). https://doi.org/10.12973/eurasia.2015.1369a

Habiddin, H., & Page, E. M. (2019). Development and Validation of a Four-Tier Diagnostic Instrument for Chemical Kinetics (FTDICK). Indonesian Journal of Chemistry, 19(3), 720. https://doi.org/10.22146/ijc.39218

Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230. https://doi.org/https://doi.org/10.1002/cl2.1230

Hadinugrahaningsih, T., Andina, R. E., Munggaran, L. R., & Rahmawati, Y. (2020). Analysis of students’ alternative conceptions about electrolyte and non-electrolyte solutions using a two-tier diagnostic test for chemistry teaching improvement. Universal Journal of Educational Research, 8(5), 1926–1934. https://doi.org/10.13189/ujer.2020.080529

Halim, A., Mahzum, E., Yacob, M., Irwandi, I., & Halim, L. (2021). The impact of narrative feedback, e-learning modules and realistic video and the reduction of misconception. Education Sciences, 11(4). https://doi.org/10.3390/educsci11040158

Helm, H. (1980). Misconceptions in Physics Amongst South African Students. Physics Education, 15(2), 92–105. https://doi.org/10.1088/0031-9120/15/2/308

Hueth, K. D., Prinzi, A. M., & Timbrook, T. T. (2022). Diagnostic Stewardship as a Team Sport: Interdisciplinary Perspectives on Improved Implementation of Interventions and Effect Measurement. Antibiotics, 11(2), 250. https://doi.org/10.3390/antibiotics11020250

Istiyono, E., Sunu Brams Dwandaru, W., Fenditasari, K., Ayub, M. R. S. S. N., & Saepuzaman, D. (2023). The Development of a Four-Tier Diagnostic Test Based on Modern Test Theory in Physics Education. European Journal of Educational Research, 12(1), 371–385. https://doi.org/10.12973/eu-jer.12.1.371

Izzah, N. (2019). Identification of students’ misconception on Newton’s law of gravitation concept using the four-tier diagnostic test instrument. Journal of Science Education, 20(1). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070660299&partnerID=40&md5=13f53efce51992a126b9d8e2416f2538

Jumadi, J., Sukarelawan, M. I., & Kuswanto, H. (2023). An investigation of item bias in the four-tier diagnostic test using Rasch model. International Journal of Evaluation and Research in Education, 12(2), 622–629. https://doi.org/10.11591/ijere.v12i2.22845

Kiray, S. A., & Simsek, S. (2021). Determination and Evaluation of the Science Teacher Candidates’ Misconceptions About Density by Using Four-Tier Diagnostic Test. International Journal of Science and Mathematics Education, 19(5), 935–955. https://doi.org/10.1007/s10763-020-10087-5

Klammer, J. (1998). An Overview of Techniques for Identifying, Acknowledging and Overcoming Alternate Conceptions in Physics Education.

Lai, A.-F., & Chen, D.-J. (2010). Web-Based Two-Tier Diagnostic Test and Remedial Learning Experiment. International Journal of Distance Education Technologies, 8(1), 31–53. https://doi.org/10.4018/jdet.2010010103

Liampa, V., Malandrakis, G. N., Papadopoulou, P., & Pnevmatikos, D. (2019). Development and Evaluation of a Three-Tier Diagnostic Test to Assess Undergraduate Primary Teachers’ Understanding of Ecological Footprint. Research in Science Education, 49(3), 711–736. https://doi.org/10.1007/s11165-017-9643-1

Lim, H. L., & Poo, Y. P. (2021). Diagnostic Test to Assess Misconceptions on Photosynthesis and Plant Respiration: Is It Valid and Reliable? Jurnal Pendidikan IPA Indonesia, 10(2), 241–252. https://doi.org/10.15294/jpii.v10i2.26944

Liu, J. H., & Zanotti, K. M. (2011). Management of the Adnexal Mass. Obstetrics & Gynecology, 117(6), 1413–1428. https://doi.org/10.1097/AOG.0b013e31821c62b6

López-Garduza, F., Díaz, M. H. R., & Cabral-Rosetti, L. G. (2024). Engineering Professors’ Conceptions on the Conceptual Field of Electrostatics in Mexico. International Journal of Innovation in Science and Mathematics Education, 31(6), 33–45. https://doi.org/10.30722/IJISME.31.06.003

Majer, J., Slapničar, M., & Devetak, I. (2019). Assessment of the 14- And 15-year-old students’ understanding of the atmospheric phenomena. Acta Chimica Slovenica, 66(3), 659–667. https://doi.org/10.17344/acsi.2019.5087

McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear Motion in the Absence of External Forces: Naïve Beliefs About the Motion of Objects. Science, 210(4474), 1139–1141. https://doi.org/10.1126/science.210.4474.1139

McDermott, L. C. (1993). Guest Comment: How we teach and how students learn—A mismatch? American Journal of Physics, 61(4), 295–298. https://doi.org/10.1119/1.17258

Métioui, A., & Trudel, L. (2020). Unipolar Reasoning in Electricity: Developing a Digital Two-Tier Diagnostic Test. WSEAS Transactions on Electronics, 11, 86–95. https://doi.org/10.37394/232017.2020.11.11

Muhajir, A. (2021). Relationship Teaching Experience and Educator Certificates against Pedagogical Competencies. Review of International Geographical Education Online, 11(6), 866–874. https://doi.org/10.48047/rigeo.11.06.104

Murni, H. P., Azhar, M., Ellizar, E., Nizar, U. K., & Guspatni, G. (2022). Three Levels of Chemical Representation-Integrated and Structured Inquiry-Based Reaction Rate Module: Its Effect on Students’ Mental Models. Journal of Turkish Science Education, 19(3), 758–772. https://doi.org/10.36681/tused.2022.148

Nainggolan, Y. N., Permadani, K. G., & Prajoko, S. (2022). Analysis of student’s misconceptions on the material of the immune system using a three-tier diagnostic test. JPBIO (Jurnal Pendidikan Biologi), 7(2), 158–166. https://doi.org/10.31932/jpbio.v7i2.1681

Nasir, M., Sunarno, W., & Rahmawati, F. (2023). The Development of a Two-Tier Diagnostic Test for Student Understanding of Light. Journal of Turkish Science Education, 20(1), 150–172. https://doi.org/10.36681/tused.2023.009

Nurfalah, E., Arofah, I., Yuniwati, I., Haslinah, A., & Lestari, D. R. (2020). Construction a diagnostic test in the form of two-tier multiple choice on calculus material. Mathematics and Statistics, 8(5), 577–582. https://doi.org/10.13189/ms.2020.080512

Osadchuk, O. (2021). Psychological mechanisms of student teachers’ professional reliability training. Education & Self Development, 16(3), 115–126. https://doi.org/10.26907/esd.16.3.11

Osborne, J. F., Black, P., Meadows, J., & Smith, M. (1993). Young children’s (7‐11) ideas about light and their development. International Journal of Science Education, 15(1), 83–93. https://doi.org/10.1080/0950069930150107

Palmer, A. L., & Sarju, J. P. (2022). Inclusive Outreach Activity Targeting Negative Alternate Conceptions of Chemistry. Journal of Chemical Education, 99(5), 1827–1837. https://doi.org/10.1021/acs.jchemed.1c00400

Prodjosantoso, A. K., & Hertina, A. M. (2019). The misconception diagnosis on ionic and covalent bonds concepts with three tier diagnostic test. International Journal of Instruction, 12(1), 1477–1488. https://doi.org/10.29333/iji.2019.12194a

Putri, O. D. A., Prastowo, T., & Sanjaya, I. G. M. (2023). Profile of Students’ Misconceptions on Substance Pressure Using a Three-tier Diagnostic Test. IJORER : International Journal of Recent Educational Research, 4(1), 1–15. https://doi.org/10.46245/ijorer.v4i1.267

Ramadhani, N. N., & Ermawati, F. U. (2021). Five-Tier Diagnostic Test Instrument for Uniform Circular Motion Concepts: Development, Validity, Reliability and Limited Trials. Jurnal Pendidikan Fisika, 9(1). https://doi.org/10.26618/jpf.v9i1.4763

Ramanan, P., Bryson, A. L., Binnicker, M. J., Pritt, B. S., & Patel, R. (2018). Syndromic Panel-Based Testing in Clinical Microbiology. Clinical Microbiology Reviews, 31(1). https://doi.org/10.1128/CMR.00024-17

Retone, L. E., & Prudent, M. S. (2023). ASSESSING UNDERGRADUATES’ MISCONCEPTIONS ON CENTRAL DOGMA OF MOLECULAR BIOLOGY USING A 3-TIER DIAGNOSTIC TEST. Journal of Sustainability Science and Management, 18(10), 150–160. https://doi.org/10.46754/jssm.2023.10.010

Ribič, L., Devetak, I., & Slapničar, M. (2024). Assessing 15-year-olds’ Understanding of Chemical Concepts in the Context of the Lithosphere and Pedosphere. Acta Chimica Slovenica, 71(1), 84–90. https://doi.org/10.17344/acsi.2024.8610

Roos, H., Fälth, L., Karlsson, L., Nilvius, C., Selenius, H., & Svensson, I. (2023). Promoting basic arithmetic competence in early school years–using a response to intervention model. Journal of Research in Special Educational Needs, 23(4), 313–322. https://doi.org/10.1111/1471-3802.12602

Shamigulova, O. A. (2022). Diagnostics of Methodological Competencies of a Teacher. https://doi.org/10.15405/epsbs.2022.11.76

Shim, G. T. G., Shakawi, A. M. H. A., & Azizan, F. L. (2017). Relationship between Students’ Diagnostic Assessment and Achievement in a Pre-University Mathematics Course. Journal of Education and Learning, 6(4), 364. https://doi.org/10.5539/jel.v6n4p364

Sreenivasulu, B., & Subramaniam, R. (2014). Exploring Undergraduates’ Understanding of Transition Metals Chemistry with the use of Cognitive and Confidence Measures. Research in Science Education, 44(6), 801–828. https://doi.org/10.1007/s11165-014-9400-7

Sujinah. (2024). Utilizing Cognitive Diagnostic Assessments to Identify and Address Student Needs in Differentiated Classrooms. Journal of Higher Education Theory and Practice, 24(1). https://doi.org/10.33423/jhetp.v24i1.6763

Suparman, A. R., Rohaeti, E., & Wening, S. (2024). DEVELOPMENT OF COMPUTER-BASED CHEMICAL FIVE-TIER DIAGNOSTIC TEST INSTRUMENTS: A GENERALIZED PARTIAL CREDIT MODEL. Journal on Efficiency and Responsibility in Education and Science, 17(1), 92–106. https://doi.org/10.7160/eriesj.2024.170108

Treagust, D. F. (1986). Evaluating Students’ Misconceptions by Means of Diagnostic Multiple Choice Items. Research in Science Education, 16(1), 199–207. https://doi.org/10.1007/bf02356835

Trisniarti, M. D., Aminah, N. S., & Sarwanto, S. (2020). Profile of senior high school students’ misconception in physics using need-based analysis. Journal of Physics: Conference Series, 1567(3), 032072. https://doi.org/10.1088/1742-6596/1567/3/032072

Tuut, M. K., Burgers, J. S., van der Weijden, T., & Langendam, M. W. (2022). Do clinical practice guidelines consider evidence about diagnostic test consequences on patient‐relevant outcomes? A critical document analysis. Journal of Evaluation in Clinical Practice, 28(2), 278–287. https://doi.org/10.1111/jep.13619

Uyulgan, M. A., Akkuzu, N., & Alpat, Ş. (2014). ASSESSING THE STUDENTS’ UNDERSTANDING RELATED TO MOLECULAR GEOMETRY USING A TWO-TIER DIAGNOSTIC TEST. Journal of Baltic Science Education, 13(6), 839–855. https://doi.org/10.33225/jbse/14.13.839

Van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2020). Elementary and middle school mathematics: Teaching developmentally. ERIC.

Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research in Alternative Conceptions in Science: Part II Learning. In D. L. Gabel (Ed.), Handbook of Research on Science Teaching and Learning (pp. 177–210). Macmillan.

Wardani, S., Kusuma, I. W., & Liu, S. T. (2020). Comparison of learning in inductive and deductive approach to increase student’s conceptual understanding based on international standard curriculum. Jurnal Pendidikan IPA Indonesia, 9(1), 70–78. https://doi.org/10.15294/jpii.v9i1.21155

Wulandari, P. S., Cari, C., Aminah, N. S., & Nugraha, D. A. (2018). Pre-service teachers’ conceptual understanding of rolling friction coefficient. In S. M.A. & N. D.A. (Eds.), AIP Conference Proceedings (Vol. 2014, p. 020060). American Institute of Physics Inc. https://doi.org/10.1063/1.5054464

Yang, D. C., & Lin, Y.-C. (2015). Assessing 10- to 11-year-old children’s performance and misconceptions in number sense using a four-tier diagnostic test. Educational Research, 57(4), 368–388. https://doi.org/10.1080/00131881.2015.1085235

Yang, D. C., & Sianturi, I. A. J. (2019). Assessing students’ conceptual understanding using an online three-tier diagnostic test. Journal of Computer Assisted Learning, 35(5), 678–689. https://doi.org/10.1111/jcal.12368

Yeo, J.-H., Yang, H.-H., & Cho, I.-H. (2022). USING A THREE-TIER MULTIPLE-CHOICE DIAGNOSTIC INSTRUMENT TOWARD ALTERNATIVE CONCEPTIONS AMONG LOWER-SECONDARY SCHOOL STUDENTS IN TAIWAN: TAKING ECOSYSTEMS UNIT AS AN EXAMPLE. Journal of Baltic Science Education, 21(1), 69–83. https://doi.org/10.33225/jbse/22.21.69




DOI: https://doi.org/10.21831/jpe.v13i1.76906

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Prima Edukasia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Prima Edukasia indexed by:

All rights reserved p-ISSN: 2338-4743 |e-ISSN: 2460-9927

Creative Commons LicenseJurnal Prima Edukasia by http://journal.uny.ac.id/index.php/jpe/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
View Prima Edukasia Journal Stats