Comparative analysis of Indonesian news validity detection accuracy using machine learning

Rachelita Embun Safira, Universitas Negeri Yogyakarta, Indonesia
Akhsin Nurlayli, Universitas Negeri Yogyakarta, Indonesia


Hoax news prediction is required to anticipate the growth of hoax news in social media. This study aimed to determine the best model for predicting whether the news is a hoax or valid based on the dataset taken from This study used several data prediction methods: Support Vector Machine (SVM), Random Forest, Logistic Regression, and Naïve Bayes. After the research processes and data testing, the results showed that the best model for predicting hoax news was SVM, which had the highest accuracy, precision, and recall score of the others.


Logistic Regression, Naïve Bayes, Prediction, Random Forest, SVM

Full Text:



F. Rahutomo, “Eksperimen Naive Bayes Pada Deteksi Berita Hoax Berbahasa Indonesia,” J. Penelit. Komun. dan Opini Publik Vol., vol. 23, no. 1, pp. 1–15, 2019, doi: 10.33299/jpkop.23.1.1805.

D. Murthy et al., “Bots and political influence: A sociotechnical investigation of social network capital,” Int. J. Commun., vol. 10, no. June, pp. 4952–4971, 2016.

C. Zhang, A. Gupta, C. Kauten, A. V. Deokar, and X. Qin, “Detecting fake news for reducing misinformation risks using analytics approaches,” Eur. J. Oper. Res., vol. 279, no. 3, pp. 1036–1052, 2019, doi: 10.1016/j.ejor.2019.06.022.

X. Zhang and A. A. Ghorbani, “An overview of online fake news: Characterization, detection, and discussion,” Inf. Process. Manag., vol. 57, no. 2, p. 102025, 2020, doi: 10.1016/j.ipm.2019.03.004.

Soleman, “Pemanfaatan Metode Klasifikasi Naïve Bayes Untuk Pendeteksi Berita Hoax Pada Artikel Berbahasa Indonesia,” J. CoreIT, vol. 7, no. 2, pp. 83–93, 2021, doi: 10.24014/coreit.v7i2.14290.

Kominfo, “Menkominfo Imbau Ekosistem Proaktif Cegah Hoaks,” 2019. (accessed Jan. 26, 2023).

M. Choraś et al., “Advanced Machine Learning techniques for fake news (online disinformation) detection: A systematic mapping study,” Appl. Soft Comput., vol. 101, p. 107050, 2021, doi: 10.1016/j.asoc.2020.107050.

F. A. Ozbay and B. Alatas, “Fake news detection within online social media using supervised artificial intelligence algorithms,” Phys. A Stat. Mech. its Appl., vol. 540, p. 123174, 2020, doi: 10.1016/j.physa.2019.123174.

M. Davoudi, M. R. Moosavi, and M. H. Sadreddini, “DSS: A hybrid deep model for fake news detection using propagation tree and stance network,” Expert Syst. Appl., vol. 198, no. May 2021, p. 116635, 2022, doi: 10.1016/j.eswa.2022.116635.

A. Aljarbouh, “Detecting Fake News using Machine Learning : A Systematic Literature Review,” Psychol. Educ., vol. 58, no. January, pp. 1932–1939, 2021, doi: 10.17762/pae.v58i1.1046.

N. J. Conroy, V. L. Rubin, and Y. Chen, “Automatic deception detection: Methods for finding fake news,” Proc. Assoc. Inf. Sci. Technol., vol. 52, no. 1, pp. 1–4, 2015, doi: 10.1002/pra2.2015.145052010082.

A. M. B. P. and R. Andonie, “Integrating Machine Learning Techniques in Semantic Fake News Detection Adrian,” Neural Process. Lett., 2020, doi: 10.1007/s11063-020-10365-x.

I. Ahmad, M. Yousaf, S. Yousaf, and M. O. Ahmad, “Fake News Detection Using Machine Learning Ensemble Methods,” Hindawi, vol. 2020, pp. 1–11, 2020.

S. Hakak, M. Alazab, S. Khan, and T. Reddy, “An ensemble machine learning approach through effective feature extraction to classify fake news,” Futur. Gener. Comput. Syst., vol. 117, pp. 47–58, 2021, doi: 10.1016/j.future.2020.11.022.

R. Varma and P. Churi, “A systematic survey on deep learning and machine learning approaches of fake news detection in the pre- and post-COVID-19 pandemic,” no. October, 2021, doi: 10.1108/IJICC-04-2021-0069.

M. Fayaz, A. Khan, M. Bilal, and S. U. Khan, “Machine learning for fake news classification with optimal feature selection,” Soft Comput., no. May, 2022, doi: 10.1007/s00500-022-06773-x.

F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” vol. 1, no. 1, pp. 19–25, 2017.

Y. Sari, “Pengenalan Natural Language Toolkit ( NLTK ) Bagian 1,” no. September, pp. 1–5, 2019.

H. Jiawei, M. Kamber, J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.

A. K. Santoso, A. Noviriandini, A. Kurniasih, B. D. Wicaksono, and A. Nuryanto, “Klasifikasi Persepsi Pengguna Twitter Terhadap Kasus Covid-19 Menggunakan Metode Logistic Regression,” J. Inform. Kaputama, vol. 5, no. 2, pp. 234–241, 2021.



  • There are currently no refbacks.

Copyright (c) 2023 Journal of Engineering and Applied Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Our journal has been indexed by:


Our journal is supported by:

Jurnal Ilmiah Magister Managemen

Creative Commons License

Journal of Engineering and Applied Technology (JEATech) by Faculty of Engineering UNY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.