A TEST OF ANALYTICAL THINKING AND CHEMICAL REPRESENTATION ABILITY ON 'RATE OF REACTION' TOPIC
Atina Rizanatul Fachriyah, Sunan Kalijaga Islamic State University, Indonesia
Didi Supriadi, Universitas Sarjanawiyata Tamansiswa, Indonesia
Muhd Ibrahim bin Muhamad Damanhuri, Sultan Idris Education University, Malaysia
Abstract
Keywords
Full Text:
PDFReferences
Abdurrahman, Liliasari, Rusli, A., & Waldrip, B. (2011). Implementasi pembelajaran berbasis multi representasi untuk peningkatan penguasaan konsep fisika kuantum. Cakrawala Pendidikan, 30(1), 30-45. doi:10.21831/cp.v1i1.4189.
Adedoyin, O. O., & Mokobi, T. (2013). Using IRT psychometric analysis in examining the quality of junior certificate mathematics multiple choice examination test items. International Journal of Asian Social Science, 3(4), 992-1011.
Anderson, L. W., &Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing. New York, NY: Longman.
Areesophonpichet, S. (2013). A development of analytical thinking skills of graduate students. The Asian Conference on Education (pp. 1-5). Osaka, Japan: The International Academic Forum.
Beavers, A. S., Lounsbury, J. W., Richard, J. K., Huck, S. W., Skolits, G. J., & Esquivel, S. L. (2013). Practical considerations for using exploratory factor analysis in educational research. Practical Assessment, Research & Evaluation, 18(6), 1-13.
Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences. Dordrecht: Netherlands.
Bucat, B., &Mocerino, M. (2009). Learning at the sub-micro level: structural representations. In Gilbert, J. K., &Treagust, D. F. (Eds), Multiple representations in chemical education. (pp.1-8). Dordrecht: Springer.
Brown, R. L., Obasi, C. N., & Barret, B. P. (2016). Rasch analysis of the WURSS-21 dimensional validation and assessment of invariance. J. Lung. Pulm. Respir. Res., 3(2), 1-16. doi:10.15406/jlprr.2016.03.00076.
Çakmakçı, G., Leach, J., & Donnelly, J. (2006). Students’ ideas about reaction rate and its relationship with concentration or pressure. International Journal of Science Education, 28(15), 1795-1815. doi:10.1080/09500690600823490.
Calik, M., Kolomuc¸ A., & Karagolge, Z. (2010). The effect of conceptual change pedagogy on students’ conceptions of rate of reaction. Journal of Science Education and Technology, 19(5), 422-433. doi:10.1007/s10956-010-9208-9.
Chandrasegaran, A. L., Treagust, D. F., &Mocerino, M. (2007). The development of a two-tier multiple-choice diagnostic instrument for evaluating secondary school students’ ability to describe and explain chemical reactions using multiple levels of representation. Chemistry Education Research and Practice, 8, 293-307. doi:10.1039/b7rp90006f.
Dalgety, J., Coll, R. K., & Jones, A. (2003). Development of chemistry attitudes and experiences questionnaire (CAEQ). Journal of Research in Science Teaching, 40(7), 649-668. doi: 10.1002/tea.10103.
Davidowitz, B., Chittleborough, G., & Murray, E. (2010). Student-generated submicro diagrams: a useful tool for teaching and learning chemical equations and stoichiometry. Chem. Educ. Res. Pract., 11(3), 154-164.doi: 10.1039/C005464J.
Devetak, I. E. (2009). Comparing Slovenian year 8 and year 9 elementary school pupils’ knowledge of electrolyte chemistry and their intrinsic motivation. Chem. Educ. Res. Pract., 10(1), 281-290.doi: 10.1039/B920833J.
El-Korashy, A. F. (1995). Applying the rasch model to the selection of items for a mental ability test . Educational and Psychological Mesurement, 55(5), 753-763. doi:10.1177%2F0013164495055005006.
George, D., & Mallery, P. (2003). SPSS for windows step by step: A simple guide and reference. 11.0 update (4th Ed.). Boston, MA: Allyn & Bacon.
Gilbert, J. K., &Treagust, D. F. (2009). Macro, submicro and symbolic representations and the relationships between them: Key models in chemical education. In J. K. Gilbert & D. F. Treagust (Eds), Multiple representations in chemical education. (pp.1-8). Dordrecht: Springer.
Guler, N., Uyanik, G. K., & Teker, G. T. (2014). Comparison of classical test theory and item response theory in terms of item parameters. European Journal of Research on Education, 2(1), 1-6.
Greiff, S., Wüstenberg, S., Molnár, G., Fischer, A., Funke, J., & Csapó, B. (2013). Complex problem solving in educational contexts—something beyond g: Concept, assessment, measurement invariance, and construct validity. Journal of Educational Psychology, 18(1), 1-15. doi:10.1037/a0031856.
Hafsah, T., Hashim, R., Zurida, I., Jusoff, K., & Yin, K. Y. (2014). The influence of students’ concept of mole, problem representation ability and mathematical ability on stoichiometry problem solving. Scottish Journal of Arts, Social Sciences and Scientific Studies, 21(1), 3-21.
Hambleton, R. K., &Swaminathan, H. (1985). Item response theory principles and applications. Boston, MA: Kluwer Nijhoff Publishing.
Hambleton, R. K., Swaminathan, H., &Rogers, H. J. (1991). Fundamental of item response theory. Los Angeles: Sage Publication, Inc.
Johnstone, A. (2000). Chemical education research: Where from here? Chemistry Education, 4(1), 34-48.
Kaya, E. &Geban, O. (2012). Facilitating conceptual change in rate of reaction concepts using conceptual change oriented instruction. Education and Science, 37(163), 216-225.
Kellya, R., & Hansenb, S. (2017). Exploring the design and use of molecular animations that conflict for understanding chemical reactions. ACS symposium on Chemical Education, 40(4), 476-481. doi:10.21577/0100-4042.20170043.
Kırık, O. T &Boz, Y. (2012) Cooperative learning instruction for conceptual change in the concepts of chemical kinetics. Chemistry Education Research and Practice, 13(3), 221–236.doi:10.1039/C1RP90072B.
Kolomuç, A. & Çalık, M. (2012) A comparison of chemistry teachers’and grade 11 students’ alternative conceptions of ‘rate of reaction’. Journal of Baltic Science Education, 11(4), 333-346.
Köse, I. A. (2014). Assessing model data fit of unidimensional
item response theory models in simulated data. Academic Journal Educational Research and Reviews, 9(17), 642-649. doi:10.5897/ERR2014.1729.
Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226.doi:10.1016/S0959-4752(02)00021-X.
Kurt, S., & Ayas, A. (2012). Improving students’ understanding and explaining real life problems on concepts of reaction rate by using a four step constructivist approach. Energy Education Science and Technology Part B: Social and Educational Studies, 4(2), 979-992.
Leech, N. L., Barret, K. C., & Morgan, G. A. (2005). SPSS for intermediate statistics: Use and interpretation. New Jersey, NJ: Lawrence Erlbaum Associates, Inc.
Li, W. S., & Arshad, M. Y. (2014). Application of multiple representation levels in redox reactions among tenth grade chemistry teachers. Journal of Turkish Science Education, 11(3), 35-52.doi:10.12973/tused.10117a.
Mayer, R. E. (2002). Rote versus meaningful learning. Theory into Practice, 41(4), 226-232. doi:10.1207/s15430421tip4104_4.
Milenković, D., Segedinac, M., Hrin, T., & Cvjetićanin, S. (2014). Cognitive load at different levels. Croatian Journal of Education, 16(3), 699-722.
Olakanmi, E. (2015). The effects of a web-based computer simulation on students' conceptual understanding rate of reaction and attitude towards chemistry. Journal of Baltic Science Education, 14(5), 627-640.
Petrovska, S., &Veselinovska, S. S. (2013). Contemporary pedagogical approaches for developing higher level thinking on science classes. Procedia – Social and Behavioral Sciences, 92, 702-710. doi:10.1016/j.sbspro.2013.08.72.
Pratiwi, Y., Rahayu, S., & Fajaroh, F. (2016). Socioscientific issues (SSI) in reaction rates topic and its effect on the critical thinking skills of high school student. Jurnal Pendidikan IPA Indonesia, 5(2), 164-170. doi:10.15294/jpii.v5i2.7676.
Ramirez, R. P. B., &Ganaden, M. S. (2008). Creative activities and students’ higher order thinking skills. Education Quarterly, 66(1), 22-33. doi: 10.1.1.824.9279
Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. Journal of Educational Statistics, 4(3), 207-230. doi:10.3102/10769986004003207.
Redhana, I. W., & Merta, L. M. (2017). Green chemistry practicum to improve student learning outcomes of reaction rate topic. Cakrawala Pendidikan, 34(3), 382-403. doi:10.21831/cp.v36i3.13062.
Retnawati, H. (2014). Teori respon butir dan penerapannya untuk peneliti, praktisi pengukuran, dan pengujian mahasiswa pascasarjana. Yogyakarta: Parama Publishing.
Retnawati, H. (2016). Validitas reliabilitas & karakteristik butir. Yogyakarta: Parama Publishing.
Sangoseni, O., Hellman, M., & Hill, C. (2013). Development and validation of a questionnaire to assess the effect of online learning on behaviors, attitudes, and clinical practices of physical therapist in the United States regarding evidence-base clinical practice. The International Journal of Allied Health Sciences and Practice, 11(2), 1-12.
Seçken, N &Seyhan, H.G. (2015). An analysis of high school students’ academic achievement and anxiety over graphical chemistry problems about the rate of reaction: The case of Sivas province.Procedia-Social and Behavioral Sciences, 174, 347-354.doi:10.1016/j.sbspro.2015.01.671.
Sunyono, Yuanita, L., & Ibrahim, M. (2015). Mental models of students on stoichiometry consept in learning by method based on multiple representation. The Online Journal of New Horizons in Education, 5(2), 30-45.
Supasorn, S., &Promarak, V. (2015). Implementation of 5E inquiry incorporated with analogy learning approach to enhance conceptual understanding of chemical reaction rate for grade 11 students. Chemistry Education Research and Practice, 16(1), 121–132.doi:10.1039/c4rp00190g.
Taleb, D. M., & Chadwick, C. (2016). Enhancing student critical and analytical thinking skills at a higher education level in developing countries: Case study of the british university in dubai. Journal of Educational and Instructional Studies, 6(1), 67-77.
Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179-195.doi:10.1080/09500690903386435.
Tastan, Ö., Yalcinkaya, E., & Boz, Y. (2010). Pre-service chemistry teachers’ ideas about reaction mechanism.Journal of Turkish Science Education, 7(1), 47-60.
Thaneerananon, T., Triampo, W., &Nokkaew, A. (2016). Development of a test to evaluate students’ analytical thinking based on fact versus opinion differentiation. International Journal of Instruction, 9(2), 123-138. doi:10.12973/iji.2016.929a.
Treagust, D. F., Chittleborough, G., &Mamiala, T. L. (2003). The role of subsub-microscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368. doi:10.1080/0950069032000070306.
Trochim, W.M. (1999). The research methods knowledge base (2nd Ed.). Cincinnati, OH: Atomic Dog.
Turányi, T., &Tóth, Z. (2013). Hungarian university students’ misunderstandings in thermodynamics and chemical kinetics. Chem. Educ. Res. Pract., 14(1), 105–116. doi:10.1039/c2rp20015e.
Wahyuningsih, H. (2009). Validitas konstruk alat ukur spirituality orientation inventory (SQI). Jurnal Psikologi, 36(2), 116-129. doi:10.22146/jpsi.7890.
Wiberg, M. (2004). Classical test theory vs item response theory: An evaluation of the theory test in the Swedish driving-license test. Santiago: Centro de EstudiosPúblicos.
DOI: https://doi.org/10.21831/cp.v38i2.23062
Refbacks
- There are currently no refbacks.
Social Media:
Jurnal Cakrawala Pendidikan by Lembaga Pengembangan dan Penjaminan Mutu Pendidikan UNY is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uny.ac.id/index.php/cp/index.