Pengoptimalan Kecepatan Kompresi Citra Fraktal dengan Menggunakan Jarak Variansi Kuadrat
DOI:
https://doi.org/10.21831/pythagoras.v20i1.79254Keywords:
Image compression, fractal, square variance distance, encoding, decodingAbstract
References
Ahmed, Z. J., George, L. E., & Abduljabbar, Z. S. (2020). Fractal image compression using block indexing technique: A review. Iraqi Journal of Science, 1798-1810. https://doi.org/10.24996/ijs.2020.61.7.29
Al-Saidi, N. M. (2012). An efficient signcryption method using fractal image coding scheme. International Journal of Applied Mathematics and Informatics, 6(4), 189-197.
Awarayi, N. S., Appiah, O., Weyori, B. A., & Ninfaakang, C. B. (2021). A Digital Image Watermarking Using Dwt and L-shaped Tromino Fractal Encryption. International Journal of Image, Graphics and Signal Processing, 12(3), 33. https://doi.org/10.5815/ijigsp.2021.03.03
Barnsley, Michael F. 2000. Fractal Everywhere. Edisi ke-2. Morgan Kaufman: San Fransisco, USA.
Falconer, K. (2014). Fractal geometry: mathematical foundations and applications. John Wiley & Sons.
G. G. C. de Almeida, et al. (2021). "Collage theorems, invertibility and fractal functions." Soft Computing, vol. 25, no. 21, pp. 13649-13658. DOI: 10.1007/s00500-021-05544-6.
Gupta, R., Mehrotra, D., & Tyagi, R. K. (2020). Computational complexity of fractal image compression algorithm. IET Image Processing, 14(17), 4425-4434. https://doi.org/10.1049/iet-ipr.2019.0489
He, C., Yang, S. X., and Huang, X. 2004. Variance-based accelerating scheme for fractal image encoding. Electronics Letters. 40(2): 115-116.
He, C. J., & Shen, X. N. (2007). Improved cross trace-based algorithm for fractal image coding. Chinese Journal of Computers, 30(12), 2156–2163. https://doi:10.3321/j.issn:0254-4164.2007.12.012
Hossain, M., & Abufardeh, S. (2019). A New Method of Calculating Squared Euclidean Distance (SED) Using pTree Technology and Its Performance Analysis. In CATA (pp. 45-54). https://experts.umn.edu/en/publications/a-new-method-of-calculating-squared-euclidean-distance-sed-using-
Horng, M. H. (2012). Vector quantization using the firefly algorithm for image compression. Expert Systems with Applications, 39(1), 1078-1091. https://doi.org/10.1016/j.eswa.2011.07.108
Hou, D., Wang, H., Zhang, W., & Yu, N. (2018). Reversible data hiding in JPEG image based on DCT frequency and block selection. Signal Processing, 148, 41-47. https://doi.org/10.1016/j.sigpro.2018.02.002
Husain, A., Nanda, M. N., Chowdary, M. S., & Sajid, M. (2022). Fractals: an eclectic survey, part-I. Fractal and Fractional, 6(2), 89. https://doi.org/10.3390/fractalfract6020089
Jacquin, A. E. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on image processing, 1(1), 18-30. https://doi.org/10.1109/83.128028
Kachhia, K. B., & Parmar, P. P. (2024). A novel fractional mask for image denoising based on fractal–fractional integral. Partial Differential Equations in Applied Mathematics, 11, 100833. https://doi.org/10.1016/j.padiff.2024.100833
Landsman, Z., & Shushi, T. (2022). The location of a minimum variance squared distance functional. Insurance: Mathematics and Economics, 105, 64-78. https://doi.org/10.1016/j.insmatheco.2022.03.006
Liu, S. Q., & Pan, Z. R. (2013). Fractal image coding method based on fisher classification and space mapping. Journal of Computer Applications, 33(12), 3552–3554. https://doi:10.11772/j.issn.1001-9081.2013.12.3552
Liu, X., Tong, X., Zhang, M., Wang, Z., & Fan, Y. (2023). Image compression and encryption algorithm based on uniform non-degeneracy chaotic system and fractal coding. Nonlinear Dynamics, 111(9), 8771-8798. https://doi.org/10.1007/s11071-023-08281-5
Marrón, B. (2018). Texture filters and fractal dimension on image segmentation. Journal of Signal and Information Processing, 9(3), 229-238. https://doi.org/10.4236/jsip.2018.93014
Marusina, M. Y., Mochalina, A. P., Frolova, E. P., Satikov, V. I., Barchuk, A. A., Kuznetcov, V. I., ... & Tarakanov, S. A. (2017). MRI image processing based on fractal analysis. Asian Pacific Journal of Cancer Prevention: APJCP, 18(1), 51. https://doi.org/10.22034/APJCP.2017.18.1.51
Nawaz, B., Ullah, K., & Gdawiec, K. (2024). Generation of Mandelbrot and Julia sets by using M-iteration process. Chaos, Solitons & Fractals, 188. https://doi.org/10.1016/j.chaos.2024.115516
Qin, Z., Xiaoqing, H., & Wenbo, L. (2015). An effective image retrieval method based on fractal dimension using kernel density estimation. In Advanced Computer and Communication Engineering Technology: Proceedings of the 1st International Conference on Communication and Computer Engineering (pp. 987-999). Springer International Publishing. https://doi.org/10.1007/978-3-319-07674-4_92
Rahebi, J. (2022). Vector quantization using whale optimization algorithm for digital image compression. Multimedia Tools and Applications, 81(14), 20077-20103. https://doi.org/10.1007/s11042-022-11952-x
Revathy, K., & Jayamohan, M. (2012). Dynamic domain classification for fractal image compression. International Journal of Computer Science & Information Technology, 4(2), 95. https://doi.org/10.5121/ijcsit.2012.4208
Roy, S. K., Kumar, S., Chanda, B., Chaudhuri, B. B., & Banerjee, S. (2018). Fractal image compression using upper bound on scaling parameter. Chaos, Solitons & Fractals, 106, 16-22. https://doi.org/10.1016/j.chaos.2017.11.013
Sheeba, K., & Rahiman, A. (2016). Iteration less Wavelet-Fractal Image Compression Applicable in Cellular Mobile Communication System. International Journal of Computer Applications, 136(8), 40-44. https://doi.org/10.5120/ijca2016908543
Wang, W. W., Zhang, A. H., & Tang, T. T. (2017). A fast fractal coding algorithm with feature of parent block. Computer Technology and Development, 27(4), 51–54. https://doi:10.3969/j.issn.1673-629X.2017.04.012
Wang, L., & Liu, Z. L. (2020). A fractal image compression algorithm based on centroid features and important sensitive area classification. Computer Engineering and Science, 42(5), 869–876. https://doi:10.3969/j.issn.1007-130X.2020.05.014
Yang, J., Feng, X., Chen, Y., Yan, P., & Zhang, H. (2024). A secure fractal compression scheme based on irregular Latin square, Julia and 2D-FCICM. Digital Signal Processing, 155, 104725. https://doi.org/10.1016/j.dsp.2024.104725
Zhang, J., Zhang, A. H., Wang, W. W., & Tang, T. T. (2013). Investigation on fast fractal image encoding with sum of double cross eigenvalues. Computer Technology and Development, 27(3), 159–162. https://doi:10.3969/j.issn.1673-629X.2017.03.033
Zhao, Q., Zhang, H., & Yang, S. (2021). Hybrid wavelet-fractal image compression algorithm. IEEE Transactions on Image Processing, 30, 5462-5475.
Zhu, Z. L., Zhao, Y. L., & Yu, H. (2010). Efficient fractal image compression based on pixels distribution and triangular segmentation. Journal of Computer Applications, 30(2), 337–340. https://doi:JournalArticle/5af5a07fc095d718d827576f
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 PYTHAGORAS Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution 4.0 International License.

Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.


