Pengoptimalan Kecepatan Kompresi Citra Fraktal dengan Menggunakan Jarak Variansi Kuadrat

Authors

DOI:

https://doi.org/10.21831/pythagoras.v20i1.79254

Keywords:

Image compression, fractal, square variance distance, encoding, decoding

Abstract

Kompresi citra fraktal terdiri dari dua tahap utama, yaitu encoding dan decoding. Proses encoding umumnya membutuhkan waktu yang lebih lama karena melibatkan pencocokan antara blok domain dan blok range, sedangkan decoding berlangsung lebih cepat. Untuk meningkatkan efisiensi encoding, metode dengan jarak variansi kuadrat atau root variance distance (SVD) dikembangkan sebagai pendekatan seleksi blok domain yang lebih optimal. Metode ini menghitung perbedaan variansi antara blok domain dan blok range, sehingga hanya blok domain dengan karakteristik variansi tertentu yang dipertimbangkan dalam proses pencocokan. Dengan cara ini, jumlah perbandingan blok dapat dikurangi secara signifikan, sehingga mempercepat proses kompresi. Pengujian menggunakan citra grayscale berukuran 256í—256 piksel menunjukkan bahwa metode ini mampu mempercepat waktu encoding hingga 34 kali lebih cepat dibandingkan metode tanpa variansi, dengan kualitas citra hasil kompresi yang tetap terjaga pada Peak Signal-to-Noise Ratio (PSNR) sebesar 23.0 pada ukuran blok range 8í—8.

References

Ahmed, Z. J., George, L. E., & Abduljabbar, Z. S. (2020). Fractal image compression using block indexing technique: A review. Iraqi Journal of Science, 1798-1810. https://doi.org/10.24996/ijs.2020.61.7.29

Al-Saidi, N. M. (2012). An efficient signcryption method using fractal image coding scheme. International Journal of Applied Mathematics and Informatics, 6(4), 189-197.

Awarayi, N. S., Appiah, O., Weyori, B. A., & Ninfaakang, C. B. (2021). A Digital Image Watermarking Using Dwt and L-shaped Tromino Fractal Encryption. International Journal of Image, Graphics and Signal Processing, 12(3), 33. https://doi.org/10.5815/ijigsp.2021.03.03

Barnsley, Michael F. 2000. Fractal Everywhere. Edisi ke-2. Morgan Kaufman: San Fransisco, USA.

Falconer, K. (2014). Fractal geometry: mathematical foundations and applications. John Wiley & Sons.

G. G. C. de Almeida, et al. (2021). "Collage theorems, invertibility and fractal functions." Soft Computing, vol. 25, no. 21, pp. 13649-13658. DOI: 10.1007/s00500-021-05544-6.

Gupta, R., Mehrotra, D., & Tyagi, R. K. (2020). Computational complexity of fractal image compression algorithm. IET Image Processing, 14(17), 4425-4434. https://doi.org/10.1049/iet-ipr.2019.0489

He, C., Yang, S. X., and Huang, X. 2004. Variance-based accelerating scheme for fractal image encoding. Electronics Letters. 40(2): 115-116.

He, C. J., & Shen, X. N. (2007). Improved cross trace-based algorithm for fractal image coding. Chinese Journal of Computers, 30(12), 2156–2163. https://doi:10.3321/j.issn:0254-4164.2007.12.012

Hossain, M., & Abufardeh, S. (2019). A New Method of Calculating Squared Euclidean Distance (SED) Using pTree Technology and Its Performance Analysis. In CATA (pp. 45-54). https://experts.umn.edu/en/publications/a-new-method-of-calculating-squared-euclidean-distance-sed-using-

Horng, M. H. (2012). Vector quantization using the firefly algorithm for image compression. Expert Systems with Applications, 39(1), 1078-1091. https://doi.org/10.1016/j.eswa.2011.07.108

Hou, D., Wang, H., Zhang, W., & Yu, N. (2018). Reversible data hiding in JPEG image based on DCT frequency and block selection. Signal Processing, 148, 41-47. https://doi.org/10.1016/j.sigpro.2018.02.002

Husain, A., Nanda, M. N., Chowdary, M. S., & Sajid, M. (2022). Fractals: an eclectic survey, part-I. Fractal and Fractional, 6(2), 89. https://doi.org/10.3390/fractalfract6020089

Jacquin, A. E. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on image processing, 1(1), 18-30. https://doi.org/10.1109/83.128028

Kachhia, K. B., & Parmar, P. P. (2024). A novel fractional mask for image denoising based on fractal–fractional integral. Partial Differential Equations in Applied Mathematics, 11, 100833. https://doi.org/10.1016/j.padiff.2024.100833

Landsman, Z., & Shushi, T. (2022). The location of a minimum variance squared distance functional. Insurance: Mathematics and Economics, 105, 64-78. https://doi.org/10.1016/j.insmatheco.2022.03.006

Liu, S. Q., & Pan, Z. R. (2013). Fractal image coding method based on fisher classification and space mapping. Journal of Computer Applications, 33(12), 3552–3554. https://doi:10.11772/j.issn.1001-9081.2013.12.3552

Liu, X., Tong, X., Zhang, M., Wang, Z., & Fan, Y. (2023). Image compression and encryption algorithm based on uniform non-degeneracy chaotic system and fractal coding. Nonlinear Dynamics, 111(9), 8771-8798. https://doi.org/10.1007/s11071-023-08281-5

Marrón, B. (2018). Texture filters and fractal dimension on image segmentation. Journal of Signal and Information Processing, 9(3), 229-238. https://doi.org/10.4236/jsip.2018.93014

Marusina, M. Y., Mochalina, A. P., Frolova, E. P., Satikov, V. I., Barchuk, A. A., Kuznetcov, V. I., ... & Tarakanov, S. A. (2017). MRI image processing based on fractal analysis. Asian Pacific Journal of Cancer Prevention: APJCP, 18(1), 51. https://doi.org/10.22034/APJCP.2017.18.1.51

Nawaz, B., Ullah, K., & Gdawiec, K. (2024). Generation of Mandelbrot and Julia sets by using M-iteration process. Chaos, Solitons & Fractals, 188. https://doi.org/10.1016/j.chaos.2024.115516

Qin, Z., Xiaoqing, H., & Wenbo, L. (2015). An effective image retrieval method based on fractal dimension using kernel density estimation. In Advanced Computer and Communication Engineering Technology: Proceedings of the 1st International Conference on Communication and Computer Engineering (pp. 987-999). Springer International Publishing. https://doi.org/10.1007/978-3-319-07674-4_92

Rahebi, J. (2022). Vector quantization using whale optimization algorithm for digital image compression. Multimedia Tools and Applications, 81(14), 20077-20103. https://doi.org/10.1007/s11042-022-11952-x

Revathy, K., & Jayamohan, M. (2012). Dynamic domain classification for fractal image compression. International Journal of Computer Science & Information Technology, 4(2), 95. https://doi.org/10.5121/ijcsit.2012.4208

Roy, S. K., Kumar, S., Chanda, B., Chaudhuri, B. B., & Banerjee, S. (2018). Fractal image compression using upper bound on scaling parameter. Chaos, Solitons & Fractals, 106, 16-22. https://doi.org/10.1016/j.chaos.2017.11.013

Sheeba, K., & Rahiman, A. (2016). Iteration less Wavelet-Fractal Image Compression Applicable in Cellular Mobile Communication System. International Journal of Computer Applications, 136(8), 40-44. https://doi.org/10.5120/ijca2016908543

Wang, W. W., Zhang, A. H., & Tang, T. T. (2017). A fast fractal coding algorithm with feature of parent block. Computer Technology and Development, 27(4), 51–54. https://doi:10.3969/j.issn.1673-629X.2017.04.012

Wang, L., & Liu, Z. L. (2020). A fractal image compression algorithm based on centroid features and important sensitive area classification. Computer Engineering and Science, 42(5), 869–876. https://doi:10.3969/j.issn.1007-130X.2020.05.014

Yang, J., Feng, X., Chen, Y., Yan, P., & Zhang, H. (2024). A secure fractal compression scheme based on irregular Latin square, Julia and 2D-FCICM. Digital Signal Processing, 155, 104725. https://doi.org/10.1016/j.dsp.2024.104725

Zhang, J., Zhang, A. H., Wang, W. W., & Tang, T. T. (2013). Investigation on fast fractal image encoding with sum of double cross eigenvalues. Computer Technology and Development, 27(3), 159–162. https://doi:10.3969/j.issn.1673-629X.2017.03.033

Zhao, Q., Zhang, H., & Yang, S. (2021). Hybrid wavelet-fractal image compression algorithm. IEEE Transactions on Image Processing, 30, 5462-5475.

Zhu, Z. L., Zhao, Y. L., & Yu, H. (2010). Efficient fractal image compression based on pixels distribution and triangular segmentation. Journal of Computer Applications, 30(2), 337–340. https://doi:JournalArticle/5af5a07fc095d718d827576f

Published

2026-01-23

How to Cite

Sultoni, A. (2026). Pengoptimalan Kecepatan Kompresi Citra Fraktal dengan Menggunakan Jarak Variansi Kuadrat. PYTHAGORAS Jurnal Matematika Dan Pendidikan Matematika, 20(1). https://doi.org/10.21831/pythagoras.v20i1.79254

Issue

Section

Articles

Citation Check