Evaluation of Civil Engineering Students’ Academic Performance Using Fuzzy C-Means Clustering
DOI:
https://doi.org/10.21831/jpts.v7i2.89018Keywords:
Fuzzy c-means clustering, academic performance, civil engineering studentsAbstract
Background: Students’ academic performance is a crucial indicator of their mastery of core competencies obtained throughout the learning process in higher education. These competencies become an essential benchmark, not only for academic evaluation, but also for the industry that expects graduates to meet professional standards. Therefore, an objective and data-driven evaluation method is needed to identify students’ academic performance and support academic decision-making.
Methods: This study employs the Fuzzy C-Means (FCM) clustering method as an educational data mining technique to classify civil engineering students based on their academic results. Three key competency areas are used in this study, i.e., Structure and Material (SM), Geometry and Transportation (GT), and Construction Management (CM). A total of 221 students were analysed, exceeding the minimum sample size. The clustering process was performed using multiple cluster models (three, four, and five clusters), and the silhouette coefficient was used to evaluate the quality and accuracy of the clusters.
Results: The findings reveal that the three-cluster model provides the most representative structure, showing the highest silhouette coefficient value compared with others. This indicates that three clusters offer the most appropriate grouping for evaluating academic performance. Cluster 1 represents students with excellent academic achievement, cluster 2 consists of students with good performance, and cluster 3 represents students with concerning academic performance requiring additional academic support.
Conclusion: Overall, the study concludes that the three-cluster model, consisting of an excellent, good, and concerning performance group, offers the most accurate and representative evaluation of civil engineering students’ academic performance. These results provide valuable insights to design targeted interventions, enhance learning support, and optimize curriculum alignment to ensure that students achieve the competencies required before entering the professional field.
References
Al-Abdaliah, U., Sujaini, H., & Muhardi, H. (2020). Pengklasteran Dosen Berdasarkan Evaluasi Mahasiswa Menggunakan Metode Fuzzy C-Means. Jurnal Sistem Dan Teknologi Informasi (Justin), 8(4), 403. https://doi.org/10.26418/justin.v8i4.40094
Amalia, A., Hasan, M. F. R., Yanuarini, E., Setiawan, Y., & Saputra, J. (2021a). Perception Analysis Of PNJ Civil Engineering Students Toward Main Course Using Importance. Pedagogia: Jurnal Pendidikan., 10(1), 61–78. https://doi.org/10.21070/pedagogia.v10vi1i.1
Amalia, A., Hasan, M. F. R., Yanuarini, E., Setiawan, Y., & Saputra, J. (2021b). Perception Analysis Of PNJ Civil Engineering Students Toward Main Course Using Importance. Pedagogia: Jurnal Pendidikan., 10(1), 61–78. https://doi.org/10.21070/pedagogia.v10vi1i.1
Aminah, S., Suryadi, D., & Rahayu, S. (2023). The Effectiveness of the Reading, Mind Mapping, and Sharing (RMS) Learning Model in Improving Students’ Learning Outcomes in Road and Bridge Construction. Jurnal Pendidikan Teknik Sipil, V(2), 64–73.
Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The Fuzzy C-Means Clustering Algorithm. Computers & Geosciences, 10(2–3), 191–203. https://doi.org/10.1109/igarss.1988.569600
Castro-Montoya, B., Vélez-Gómez, P., Segura-Cardona, A., & French, B. F. (2025). A Cultural Adaptation of Tinto’s Student Integration Theory in Undergraduate Students of a Private University in Colombia. Cogent Education, 12(1). https://doi.org/10.1080/2331186X.2025.2479384
Charamba, E., & Ndhlovana, S. N. (2025). Improving Academic Performance and Achievement With Inclusive Learning Practices. IGI GLOBAL.
Devore, J. (2016). Probability and Statistics for Engineering and Science, Eighth Edition. Cengage Learning.
El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., & El Allioui, Y. (2019). A Fuzzy Classification Approach for Learning Style Prediction Based on Web Mining Technique in E-Learning Environments. Education and Information Technologies, 24(3), 1943–1959. https://doi.org/10.1007/s10639-018-9820-5
Fadrial, Y. E. (2020). Klasterisasi Hasil Evaluasi Akademik Menggunakan Metode K-Means. Prosiding-Seminar Nasional Teknologi Informasi & Ilmu Komputer (SEMASTER), 1(1), 53–65.
Han, H. (2023). Fuzzy Clustering Algorithm for University Students’ Psychological Fitness and Performance Detection. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18550
Jamhur, H. (2020). Pemodelan Prediksi Predikat Kelulusan Mahasiswa Menggunakan Fuzzy C-Means Berbasis Particle Swarm Optimization. Teknois: Jurnal Ilmiah Teknologi Informasi Dan Sains, 10(1), 13–24. https://doi.org/10.36350/jbs.v10i1.79
Križanić, S. (2020). Educational Data Mining using Cluster Analysis and Decision Tree Technique: A Case Study. International Journal of Engineering Business Management, 12, 1–9. https://doi.org/10.1177/1847979020908675
Kusumastuti, D. (2020). Kecemasan dan Prestasi Akademik pada Mahasiswa. Analitika, 12(1), 22–33. https://doi.org/10.31289/analitika.v12i1.3110
Mohammad, S. I., Yogeesh, N., Raja, N., William, P., Ramesha, M. S., & Vasudevan, A. (2025). Integrating AI and Fuzzy Systems to Enhance Education Equity. Applied Mathematics and Information Sciences, 19(2), 403–422. https://doi.org/10.18576/amis/190215
Nafuri, A. F. M., Sani, N. S., Zainudin, N. F. A., Rahman, A. H. A., & Aliff, M. (2022). Clustering Analysis for Classifying Student Academic Performance in Higher Education. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199467
Putu, D., & Putra, W. (2021). Profil Model Berpikir Mahasiswa dalam Menyelesaikan Persoalan Logika Matematika dan Teori Himpunan. 90–100.
Rachmatika, R., & Bisri, A. (2020). Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 417. https://doi.org/10.26418/jp.v6i3.43097
Rochman, E. M. S., Miswanto, & Suprajitno, H. (2022). Comparison of Clustering in Tuberculosis Using Fuzzy C-Means and K-Means Methods. Communications in Mathematical Biology and Neuroscience, 2022, 1–20. https://doi.org/10.28919/cmbn/7335
Rosadi, R., Akmal, Sudrajat, R., Kharismawan, B., & Hambali, Y. A. (2017). Student Academic Performance Analysis using Fuzzy C-Means Clustering. IOP Conference Series: Materials Science and Engineering, 166(1). https://doi.org/10.1088/1757-899X/166/1/012036
Saputra, J., Nurwidyaningrum, D., & Amalia. (2022a). Analisis Faktor-Faktor yang Mempengaruhi Kompetensi Lulusan melalui Tracer Study Prodi D4 Teknik Konstruksi Gedung PNJ. Jurnal Taman Vokasi, 10(1), 1–9.
Saputra, J., Nurwidyaningrum, D., & Amalia. (2022b). Analisis Faktor-Faktor yang Mempengaruhi Kompetensi Lulusan melalui Tracer Study Prodi D4 Teknik Konstruksi Gedung PNJ. Jurnal Taman Vokasi, 10(1), 1–9.
Saputra, J., Yanuarini, E., Nurwidyaningrum, D., Hasan, M. F. R., Setiawan, Y., & Amalia. (2023). Alumni’s Satisfactory Analysis of D3 Civil Engineering towards the Main Courses’ Competencies with Importance-Performance Analysis. AIP Conference Proceedings, 2621(1), 1–12. https://doi.org/10.1063/5.0142273
Sarker, S., Paul, M. K., Thasin, S. T. H., & Hasan, M. A. M. (2024). Analyzing Students’ Academic Performance Using Educational Data Mining. Computers and Education: Artificial Intelligence, 7(July). https://doi.org/10.1016/j.caeai.2024.100263
Sugiyono. (2014). Statistik Untuk Penelitian.pdf. Alfabeta.
Syahputra, Y. H., & Hutagalung, J. (2022). Superior Class to Improve Student Achievement Using the K-Means Algorithm. SinkrOn, 7(3), 891–899. https://doi.org/10.33395/sinkron.v7i3.11458
Zheng, B., Ward, A., & Stanulis, R. (2020). Self-Regulated Learning in a Competency-Based and Flipped Learning Environment: Learning Strategies Across Achievement Levels and Years. Medical Education Online, 25(1). https://doi.org/10.1080/10872981.2019.1686949
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jonathan Saputra, Ega Edistria, Sidiq Wacono, Tri Wulan Sari, Faqih Al Adyan

This work is licensed under a Creative Commons Attribution 4.0 International License.
The journal allows the author(s) to hold the copyright without restrictions. All works license under Creative Commons Attribution 4.0 International (CC BY 4.0)








