Evaluation of Civil Engineering Students’ Academic Performance Using Fuzzy C-Means Clustering

Authors

  • Jonathan Saputra Politeknik Negeri Jakarta
  • Ega Edistria Politeknik Negeri Jakarta
  • Sidiq Wacono Politeknik Negeri Jakarta
  • Tri Wulan Sari Politeknik Negeri Jakarta
  • Faqih Al Adyan Victoria University of Wellington

DOI:

https://doi.org/10.21831/jpts.v7i2.89018

Keywords:

Fuzzy c-means clustering, academic performance, civil engineering students

Abstract

Background: Students’ academic performance is a crucial indicator of their mastery of core competencies obtained throughout the learning process in higher education. These competencies become an essential benchmark, not only for academic evaluation, but also for the industry that expects graduates to meet professional standards. Therefore, an objective and data-driven evaluation method is needed to identify students’ academic performance and support academic decision-making.

Methods: This study employs the Fuzzy C-Means (FCM) clustering method as an educational data mining technique to classify civil engineering students based on their academic results. Three key competency areas are used in this study, i.e., Structure and Material (SM), Geometry and Transportation (GT), and Construction Management (CM). A total of 221 students were analysed, exceeding the minimum sample size. The clustering process was performed using multiple cluster models (three, four, and five clusters), and the silhouette coefficient was used to evaluate the quality and accuracy of the clusters.

Results: The findings reveal that the three-cluster model provides the most representative structure, showing the highest silhouette coefficient value compared with others. This indicates that three clusters offer the most appropriate grouping for evaluating academic performance. Cluster 1 represents students with excellent academic achievement, cluster 2 consists of students with good performance, and cluster 3 represents students with concerning academic performance requiring additional academic support.

Conclusion: Overall, the study concludes that the three-cluster model, consisting of an excellent, good, and concerning performance group, offers the most accurate and representative evaluation of civil engineering students’ academic performance. These results provide valuable insights to design targeted interventions, enhance learning support, and optimize curriculum alignment to ensure that students achieve the competencies required before entering the professional field.

Author Biographies

Jonathan Saputra, Politeknik Negeri Jakarta

Politeknik Negeri Jakarta, Civil Engineering Department, Depok, Indonesia

Ega Edistria, Politeknik Negeri Jakarta

Politeknik Negeri Jakarta, Civil Engineering Department, Depok, Indonesia

Sidiq Wacono, Politeknik Negeri Jakarta

Politeknik Negeri Jakarta, Civil Engineering Department, Depok, Indonesia

Tri Wulan Sari, Politeknik Negeri Jakarta

Politeknik Negeri Jakarta, Civil Engineering Department, Depok, Indonesia

Faqih Al Adyan, Victoria University of Wellington

Victoria University of Wellington, School of Education, Wellington, New Zealand

References

Al-Abdaliah, U., Sujaini, H., & Muhardi, H. (2020). Pengklasteran Dosen Berdasarkan Evaluasi Mahasiswa Menggunakan Metode Fuzzy C-Means. Jurnal Sistem Dan Teknologi Informasi (Justin), 8(4), 403. https://doi.org/10.26418/justin.v8i4.40094

Amalia, A., Hasan, M. F. R., Yanuarini, E., Setiawan, Y., & Saputra, J. (2021a). Perception Analysis Of PNJ Civil Engineering Students Toward Main Course Using Importance. Pedagogia: Jurnal Pendidikan., 10(1), 61–78. https://doi.org/10.21070/pedagogia.v10vi1i.1

Amalia, A., Hasan, M. F. R., Yanuarini, E., Setiawan, Y., & Saputra, J. (2021b). Perception Analysis Of PNJ Civil Engineering Students Toward Main Course Using Importance. Pedagogia: Jurnal Pendidikan., 10(1), 61–78. https://doi.org/10.21070/pedagogia.v10vi1i.1

Aminah, S., Suryadi, D., & Rahayu, S. (2023). The Effectiveness of the Reading, Mind Mapping, and Sharing (RMS) Learning Model in Improving Students’ Learning Outcomes in Road and Bridge Construction. Jurnal Pendidikan Teknik Sipil, V(2), 64–73.

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The Fuzzy C-Means Clustering Algorithm. Computers & Geosciences, 10(2–3), 191–203. https://doi.org/10.1109/igarss.1988.569600

Castro-Montoya, B., Vélez-Gómez, P., Segura-Cardona, A., & French, B. F. (2025). A Cultural Adaptation of Tinto’s Student Integration Theory in Undergraduate Students of a Private University in Colombia. Cogent Education, 12(1). https://doi.org/10.1080/2331186X.2025.2479384

Charamba, E., & Ndhlovana, S. N. (2025). Improving Academic Performance and Achievement With Inclusive Learning Practices. IGI GLOBAL.

Devore, J. (2016). Probability and Statistics for Engineering and Science, Eighth Edition. Cengage Learning.

El Aissaoui, O., El Alami El Madani, Y., Oughdir, L., & El Allioui, Y. (2019). A Fuzzy Classification Approach for Learning Style Prediction Based on Web Mining Technique in E-Learning Environments. Education and Information Technologies, 24(3), 1943–1959. https://doi.org/10.1007/s10639-018-9820-5

Fadrial, Y. E. (2020). Klasterisasi Hasil Evaluasi Akademik Menggunakan Metode K-Means. Prosiding-Seminar Nasional Teknologi Informasi & Ilmu Komputer (SEMASTER), 1(1), 53–65.

Han, H. (2023). Fuzzy Clustering Algorithm for University Students’ Psychological Fitness and Performance Detection. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18550

Jamhur, H. (2020). Pemodelan Prediksi Predikat Kelulusan Mahasiswa Menggunakan Fuzzy C-Means Berbasis Particle Swarm Optimization. Teknois: Jurnal Ilmiah Teknologi Informasi Dan Sains, 10(1), 13–24. https://doi.org/10.36350/jbs.v10i1.79

Križanić, S. (2020). Educational Data Mining using Cluster Analysis and Decision Tree Technique: A Case Study. International Journal of Engineering Business Management, 12, 1–9. https://doi.org/10.1177/1847979020908675

Kusumastuti, D. (2020). Kecemasan dan Prestasi Akademik pada Mahasiswa. Analitika, 12(1), 22–33. https://doi.org/10.31289/analitika.v12i1.3110

Mohammad, S. I., Yogeesh, N., Raja, N., William, P., Ramesha, M. S., & Vasudevan, A. (2025). Integrating AI and Fuzzy Systems to Enhance Education Equity. Applied Mathematics and Information Sciences, 19(2), 403–422. https://doi.org/10.18576/amis/190215

Nafuri, A. F. M., Sani, N. S., Zainudin, N. F. A., Rahman, A. H. A., & Aliff, M. (2022). Clustering Analysis for Classifying Student Academic Performance in Higher Education. Applied Sciences (Switzerland), 12(19). https://doi.org/10.3390/app12199467

Putu, D., & Putra, W. (2021). Profil Model Berpikir Mahasiswa dalam Menyelesaikan Persoalan Logika Matematika dan Teori Himpunan. 90–100.

Rachmatika, R., & Bisri, A. (2020). Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 417. https://doi.org/10.26418/jp.v6i3.43097

Rochman, E. M. S., Miswanto, & Suprajitno, H. (2022). Comparison of Clustering in Tuberculosis Using Fuzzy C-Means and K-Means Methods. Communications in Mathematical Biology and Neuroscience, 2022, 1–20. https://doi.org/10.28919/cmbn/7335

Rosadi, R., Akmal, Sudrajat, R., Kharismawan, B., & Hambali, Y. A. (2017). Student Academic Performance Analysis using Fuzzy C-Means Clustering. IOP Conference Series: Materials Science and Engineering, 166(1). https://doi.org/10.1088/1757-899X/166/1/012036

Saputra, J., Nurwidyaningrum, D., & Amalia. (2022a). Analisis Faktor-Faktor yang Mempengaruhi Kompetensi Lulusan melalui Tracer Study Prodi D4 Teknik Konstruksi Gedung PNJ. Jurnal Taman Vokasi, 10(1), 1–9.

Saputra, J., Nurwidyaningrum, D., & Amalia. (2022b). Analisis Faktor-Faktor yang Mempengaruhi Kompetensi Lulusan melalui Tracer Study Prodi D4 Teknik Konstruksi Gedung PNJ. Jurnal Taman Vokasi, 10(1), 1–9.

Saputra, J., Yanuarini, E., Nurwidyaningrum, D., Hasan, M. F. R., Setiawan, Y., & Amalia. (2023). Alumni’s Satisfactory Analysis of D3 Civil Engineering towards the Main Courses’ Competencies with Importance-Performance Analysis. AIP Conference Proceedings, 2621(1), 1–12. https://doi.org/10.1063/5.0142273

Sarker, S., Paul, M. K., Thasin, S. T. H., & Hasan, M. A. M. (2024). Analyzing Students’ Academic Performance Using Educational Data Mining. Computers and Education: Artificial Intelligence, 7(July). https://doi.org/10.1016/j.caeai.2024.100263

Sugiyono. (2014). Statistik Untuk Penelitian.pdf. Alfabeta.

Syahputra, Y. H., & Hutagalung, J. (2022). Superior Class to Improve Student Achievement Using the K-Means Algorithm. SinkrOn, 7(3), 891–899. https://doi.org/10.33395/sinkron.v7i3.11458

Zheng, B., Ward, A., & Stanulis, R. (2020). Self-Regulated Learning in a Competency-Based and Flipped Learning Environment: Learning Strategies Across Achievement Levels and Years. Medical Education Online, 25(1). https://doi.org/10.1080/10872981.2019.1686949

Downloads

Published

2025-11-30

How to Cite

Saputra, J., Edistria, E., Wacono, S., Sari, T. W., & Adyan, F. A. (2025). Evaluation of Civil Engineering Students’ Academic Performance Using Fuzzy C-Means Clustering. Jurnal Pendidikan Teknik Sipil, 7(2), 64–73. https://doi.org/10.21831/jpts.v7i2.89018

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.