Natural Inhibitors from Ganoderma lucidum Targeting BlaR1 Resistant Staphylococcus aureus in Athlete Skin Disease
DOI:
https://doi.org/10.21831/jomassh.v1i2.1144Keywords:
Antibiotics, Compounds, In Silico, Lactamase, SportsAbstract
Introduction: Skin infections caused by Beta-lactam-resistant Staphylococcus aureus are a concern among athletes because they spread rapidly through skin contact. These infections can interfere with performance, delay training, and affect the team's overall health, making them a significant problem in the world of sports. This study explores the potential of secondary metabolites from Ganoderma lucidum as candidates for BlaR1 inhibitors, which can be a new approach to overcome the resistance mechanism in Staphylococcus aureus. Methods: 324 secondary metabolites from G. lucidum were downloaded from KNAPSACK. Drug pharmacokinetic evaluation was performed using SwissADME based on Lipinski’s Rule of Five, while acute toxicity prediction in mice was performed using the GUSAR and QSAR platforms. Compounds that met the criteria for drug pharmacokinetics and non-toxicity were then further analyzed through molecular docking simulations against the BlaR1 protein (PDB ID: 1XA1). Results: The results showed that 26% (n=87/324) of metabolites met Lipinski's criteria and 4% (n=14/324) were predicted to be non-toxic. Based on the docking results, Lucidenic acid F was identified as the most potential candidate to inhibit antibiotic-resistant Staphylococcus aureus, with a binding affinity of -7.4 kcal/mol at the active site of BlaR1 protein. Conclusions: Lucidenic acid F has the potential to support future therapeutic development against skin disease in athletes caused by beta-lactam-resistant S. aureus. Further studies are needed in vitro and in vivo to evaluate the safety of Lucidenic acid F when applied clinically.
Downloads
References
1. Ahmadinejad Z, Alijani N, Mansori S, Ziaee V. Common sports-related infections: a review on clinical pictures, management and time to return to sports. Asian J Sports Med. 2014;5(1):1-9. doi: 10.5812/asjsm.34174. Epub 2014 Jan 26. PMID: 24868426; PMCID: PMC4009082.
2. Jiménez-Truque, N., Saye, E. J., Soper, N., Saville, B. R., Thomsen, I., Edwards, K. M., & Creech, C. B.. Association between contact sports and colonization with Staphylococcus aureus in a prospective cohort of collegiate athletes. Sports Medicine. 2017;47: 1011-1019.
3. Bilung ML, Tahar AS, Kira R, Mohd Rozali AA, Apun K. High occurrence of Staphylococcus aureus isolated from fitness equipment from selected gymnasiums. J Environ Public Health. 2018;2018:4592830.
4. Anderson BJ, Wilz L, Peterson A. The identification and treatment of common skin infections. J Athl Train. 2023;58(6):502–10.
5. Mascaro V, Capano MS, Iona T, Nobile CGA, Ammendolia A, Pavia M. Prevalence of Staphylococcus aureus carriage and pattern of antibiotic resistance, including methicillin resistance, among contact sport athletes in italy. Infect Drug Resist. 2019;12:1161.
6. Ahomies H, Descamps V, Leclerc‐Mercier S, Kluger N. Skin diseases in long‐distance runners. JEADV Clin Pract. 2024;1–11.
7. Liebich C, Wergin VV, Schubert I, Von Bruehl ML, Marquart C, Halle M, et al. Dermatoses in competitive athletes. Dtsch Z Sportmed. 2021;72:5–12.
8. Shaban RZ, Li C, O’Sullivan MV, Kok J, Dempsey K, Ramsperger M, et al. Outbreak of community-acquired Staphylococcus aureus skin infections in an Australian professional football team. J Sci Med Sport. 2021;24(6):520–5.
9. Ožegić O, Bedenić B, Ljubin Sternak S, Sviben M, Talapko J, Pažur I, et al. Antimicrobial resistance and sports: the scope of the problem, implications for athletes' health and avenues for collaborative public health action. Antibiotics. 2024;13(3):232.
10. Mitchell JJ, Jackson JM, Anwar A, Singleton SB. Bacterial sport-related skin and Soft-tissue infections (SSTIs): an ongoing problem among a diverse range of athletes. JBJS Rev. 2017;5(1):e4.
11. Frederick TE, Peng JW. A gratuitous β-lactamase inducer uncovers hidden active site dynamics of the Staphylococcus aureus BlaR1 sensor domain. PLoS One. 2018;13(5):e0197241.
12. Hryniewicz MM, Garbacz K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)–a more common problem than expected? J Med Microbiol. 2017;66(10):1367–73.
13. Kim S, Chen J, Cheng T, et al. Pubchem in data 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–95.
14. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89–98.
15. Khairullina V, Martynova Y, Kanevsky M, Kanevskaya I, Zimin Y, Maksimov L. QSAR modeling and biological testing of some 15-LOX inhibitors in a series of homo- and heterocyclic compounds. Molecules. 2024;29(23):5540.
16. Zakharov AV, Peach ML, Sitzmann M, Nicklaus MC. QSAR modeling of imbalanced high-throughput screening data in PubChem. J Chem Inf Model. 2014 Mar 24;54(3):705-12. doi: 10.1021/ci400737s. Epub 2014 Feb 28. PMID: 24524735; PMCID: PMC3985743.
17. Afendi FM, Okada T, Yamazaki M, et al. KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012;53(2):e1.
18. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
19. Pettersen EF, Goddard TD, Huang CC, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70–82.
20. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.
21. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015;1263:243–50.
22. Baroroh U, Aji MH, Khunaifi A. Molecular interaction analysis and visualization of protein-ligand docking using Biovia discovery studio visualizer. Indones J Comput Biol. 2023;2(1). doi:10.24198/ijcb.v2i1.46322.
23. Zheng C, Rangsinth P, Shiu PH, Wang W, Li R, Li J, Leung GP. A review on the sources, structures, and pharmacological activities of lucidenic acids. Molecules. 2023;28(4):1756.
24. Wu S, Zhang S, Peng B, Tan D, Wu M, Wei J, Luo H. Ganoderma lucidum: a comprehensive review of phytochemistry, efficacy, safety and clinical study. Food Sci Hum Wellness. 2024;13(2):568-96.
25. Chan YS, Chong KP. Bioactive compounds of Ganoderma boninense inhibited methicillin-resistant Staphylococcus aureus growth by affecting their cell membrane permeability and integrity. Molecules. 2022;27(3):838.
26. Ewunkem A, Merrills L, Williams Z, Justice B, Iloghalu U, Williams V, Singh D. In vitro antimicrobial efficacy assessment of ethanolic, aqueous, and dual solvent extracts of mushroom Ganoderma lucidum: genomic and morphological analysis. Antibiotics. 2024;13(12):1109.
27. Mahizan NA, Yang SK, Moo CL, Song AAL, Chong CM, Chong CW, Lai KS. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631.
28. Sağsöz NP, Güven L, Gür B, Sezer CV, Cengiz M, Orhan F, Barış Ö. Different essential oils can inhibit Candida albicans biofilm formation on acrylic resin by suppressing aspartic proteinase: in vitro and in silico approaches. Clin Oral Investig. 2025;29(2):1-20.
29. Jeong HU, Kwon SS, Kong TY, Kim JH, Lee HS. Inhibitory effects of cedrol, β-cedrene, and thujopsene on cytochrome P450 enzyme activities in human liver microsomes. J Toxicol Environ Health A. 2014;77(22-24):1522-32.
30. Yang X, Zhao S, Deng Y, Xu W, Wang Z, Wang W, et al. Antibacterial activity and mechanisms of α-terpineol against foodborne pathogenic bacteria. Appl Microbiol Biotechnol. 2023;107(21):6641–53
31. Abdurahman AP, Varkey P, Kuruvilla J, Churray VK, Narayanan SK, Tharakan M, et al. Antibacterial activity of 1,8-cineole and α-terpineol bioactive from cardamom against multi-drug-resistant Escherichia coli isolated from urinary tract infections—an in vitro study. Int J Basic Clin Pharmacol. 2024;13(5):599.
32. Silberstein SD. Preventive migraine treatment. Continuum (Minneapolis, Minn.). 2016;21(4): 954-971.
33. Ajiboye TO, Mohammed AO, Bello SA, Yusuf II, Ibitoye OB, Muritala HF, et al. Antibacterial activity of Syzygium aromaticum seed: studies on oxidative stress biomarkers and membrane permeability. Microb Pathog. 2016;95:208-15.
34. Mozirandi W, Tagwireyi D, Mukanganyama S. Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae). BMC Complement Altern Med. 2019;19:1-11.
35. Amiranashvili L, Nadaraia N, Merlani M, Kamoutsis C, Petrou A, Geronikaki A, et al. Antimicrobial activity of nitrogen-containing 5-α androstane derivatives: in silico and experimental studies. Antibiotics. 2020;9(5):224
36. Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. 2018;19(4):1114. doi:10.3390/ijms19041114.
37. Mena TP, Marfu’ah S. Antibacterial activity of free fatty acids, potassium soap, and fatty acids methyl esters from VCO (virgin coconut oil). In: IOP Conf Ser Mater Sci Eng. 2020;833(1):012023. doi:10.1088/1757-899X/833/1/012023.
38. Park S, Lee JH, Kim YG, Hu L, Lee J. Fatty acids as aminoglycoside antibiotic adjuvants against Staphylococcus aureus. Front Microbiol. 2022;13:876932. doi:10.3389/fmicb.2022.876932.
39. Park S, Lee JH, Kim YG, Hu L, Lee J. Fatty acids as aminoglycoside antibiotic adjuvants against Staphylococcus aureus. Front Microbiol. 2022;13:876932. doi:10.3389/fmicb.2022.876932.
40. Kuttithodi AM, Nikhitha D, Jacob J, Narayanankutty A, Mathews M, Olatunji OJ, et al. Antioxidant, antimicrobial, cytotoxicity, and larvicidal activities of selected synthetic bis-chalcones. Molecules. 2022;27(23):8209.
41. Shi C, Che M, Zhang X, Liu Z, Meng R, Bu X, et al. Antibacterial activity and mode of action of totarol against Staphylococcus aureus in carrot juice. J Food Sci Technol. 2018;55:924–34.
42. Lu Y, Zhao Z, Chen Y, Wang J. Synthesis and Biological Activity of Aldehyde Derivatives of Isopimaric Acid. Lett Org Chem. 2021;18(12).
43. López-López G, Ramírez-Espinosa JJ, Navarrete-Vázquez G, et al. New antibacterial and 5-lipoxygenase activities of synthetic benzyl phenyl ketones: biological and docking studies. Bioorg Chem. 2018;81:234–42. doi:10.1016/j.bioorg.2018.08.006
44. Surahmaida S, Sudarwati TPL, Junairiah J. Analisis GCMS terhadap senyawa fitokimia ekstrak metanol Ganoderma lucidum. J Kimia Riset. 2019;3(2):147.
45. Nuraeni F, Sembiring SBB. Aktivitas antioksidan serta identifikasi senyawa dari ekstrak jamur lingzhi (Ganoderma lucidum) dengan liquid chromatography-mass spectrometry (LC-MS). Pros Semin Nasl & Intern. 2018;1(1).
46. Faturrahman F, Sukiman S, Suryadi BF, Sarkono S, Hidayati E. Perbandingan aktivitas antimikroba ekstrak etanol dari tiga spesies Ganoderma asal pulau lombok. J Sains Teknol Lingkung. 2021;7(2):160-72.
47. Handrianto P. Uji Aktivitas antimikroba ekstrak jamur lingzhi (Ganoderma lucidum) menggunakan pelarut etanol 96% terhadap Staphylococcus aureus. J Pharm Sci. 2017;2(2):41-5.
48. Parameswari BD, Rajakumar M, Hariharan A, Kumar S, Mohamed K, Ballal S. Green synthesis of Ganoderma lucidum-mediated silver nanoparticles and its microbial activity against oral pathogenic microbes: an In Vitro study. J Pharm Bioallied Sci. 2024;16(Suppl 2):S1456-S1460.
49. Nguyen TTT, Nguyen TTT, Nguyen HD, Nguyen TK, Pham PTV, Tran LTT, et al. Anti-Staphylococcus aureus potential of compounds from Ganoderma sp.: a comprehensive molecular docking and simulation approaches. Heliyon. 2024;10(7).
50. Nhlapho S, Nyathi MHL, Ngwenya BL, Dube T, Telukdarie A, Munien I, et al. Druggability of pharmaceutical compounds using Lipinski rules with machine learning. Sci Pharm. 2024;3(4):177–92.
51. Kim MT, Sedykh A, Chakravarti SK, Saiakhov RD, Zhu H. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches. Pharm Res. 2014;31:1002–14.
52. Lohit N, Singh AK, Kumar A, Singh H, Yadav JP, Singh K, et al. Description and In silico ADME studies of US-FDA approved drugs or drugs under clinical trials which violate the Lipinski’s rule of 5. Lett Drug Des Discov. 2024;21(8). doi:10.2174/1570180820666230224112505.
53. Sun Y, Hou T, He X, Man VH, Wang J. Development and test of highly accurate endpoint free energy methods. 2: prediction of logarithm of n‐octanol–water partition coefficient (logP) for druglike molecules using MM‐PBSA method. J Comput Chem. 2023;44(13):1300–11.
54. Izzaturahmi AS, Pauziah ASU, Virliana A, Sitinjak GML, Ramadhiany ZZ, Elaine AA, et al. In silico study of licorice (Glycyrrhiza glabra L.) on VEGFR-2 receptors in breast cancer. Indones J Biol Pharm. 2023;3(3):137–53.
55. Chen X, Li H, Tian L, Li Q, Luo J, Zhang Y. Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. J Comput Biol. 2020;27(9):1397–406.
56. Ayun AQ, Faridah DN, Yuliana ND, Andriyanto. Pengujian toksisitas akut LD50 infusa benalu teh (Scurrula sp.) dengan menggunakan mencit (Mus musculus). Acta Vet Indones. 2021;9(1):53–63.
57. Morris-Schaffer K, McCoy M. A review of the LD50 and Its current role in hazard communication. ACS Chem Health Saf. 2020. doi:10.1021/acs.chas.0c00096.
58. Gadaleta D, Vuković K, Toma C, Lavado GJ, Karmaus AL, Mansouri K, et al. SAR and QSAR modeling of a large collection of LD50 Rat acute oral toxicity data. J Cheminform. 2019;11(1):58.
59. Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be Used in experimental animal studies? Pharm Res. 2019;37(1):12.
60. Jin JF, Zhu LL, Chen M, Xu HM, Wang HF, Feng XQ, et al. The optimal choice of medication administration route regarding Intravenous, Intramuscular, and Subcutaneous nnjection. Patient Prefer Adherence. 2015;9:923–42.
61. Chaturvedi S, Sarethy IP. Natural Compounds from Aureobasidium sp. TD-062: A new frontier in targeting BlaR1 protein. J Pure Appl Microbiol. 2025. doi:10.22207/JPAM.19.1.19.
62. Lade H, Kim JS. Molecular determinants of β-lactam resistance in Methicillin-resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics. 2023;12(9):1362.
63. Ewunkem A, Merrills L, Williams Z, Justice B, Iloghalu U, Williams V, Singh D. In vitro antimicrobial efficacy assessment of ethanolic, aqueous, and dual solvent extracts of mushroom Ganoderma lucidum: Genomic and morphological analysis. Antibiotics. 2024;13(12):1109.
64. Hashizume H, Takahashi Y, Masuda T, Ohba SI, Ohishi T, Kawada M, et al. In vivo efficacy of β-lactam/tripropeptin C in a Mouse Septicemia Model and The Mechanism of Reverse β-lactam Resistance in Methicillin-resistant Staphylococcus aureus Mediated by Tripropeptin C. J Antibiot. 2018;71(1):79–85.
65. Dawod RE, Attya A, Arafat N. Studies on Staphylococcus aureus infection in rabbit farms. Egypt J Anim Health. 2024;4(1):141–58
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Arija Qoshasi, D.Riani Pangestika, Rafly Prasetyo Priambodo, Arifa Rizqi Nafisa, Anggiresti Kinasih

This work is licensed under a Creative Commons Attribution 4.0 International License.
 
						 
							