Mathematical Model of Preventing The Spread of Dengue Disease in Yogyakarta Using Wolbachia Mosquitoes

Authors

  • Syahla Kamila Harsono Putri Department of Mathematics Education, Yogyakarta State of University, Indonesia
  • Fitriana Yuli Saptaningtyas Departemen Pendidikan MatematikaFakultas Matematika & Ilmu Pengetahuan Alam, Indonesia
  • Hartono Department of Mathematics Education, Yogyakarta State of University, Indonesia
  • Fithri Annisatun Lathifah Department of Mathematics Education, Yogyakarta State of University, Indonesia
  • Fugo Takasu Department of Information and Computer Sciences, Nara Women’s University, Japan

DOI:

https://doi.org/10.21831/pythagoras.v20i1.91115

Abstract

The purpose of this study is to explain the mathematical model of preventing the spread of dengue fever in the Special Region of Yogyakarta by involving Wolbachia mosquitoes, explain the equilibrium point and stability analysis and conduct numerical simulations. The model used in this study is SIS-SI model, using population data of Yogyakarta Special Region Province in 2023. The steps involved include forming the SIS-SI mathematical model, determining the disease-free and endemic equilibrium points, calculating the basic reproduction number, analyzing the stability of the equilibrium point, and conducting numerical simulation. The results showed that the disease-free equilibrium point is asymptotically stable when . The endemic equilibrium point is asymptotically stable when . Research has shown that  is related to the inhibitory effect of Wolbachia bacteria ( ). When , , the threshold for disease spread. If , the disease will not spread in the population, conversly if , the disease will spread. Based on the numerical simulations conducted, it was observed that the smaller the inhibitory effect of Wolbachia bacteria on dengue replication in mosquitoes, the more effective Wolbachia bacteria are in suppressing the spread of dengue virus. As a result, this leads to the disappearance of dengue disease from the population.

References

Al Faruqy, A. H., & Prawoto, B. P. (2024). Bilangan reproduksi darat model penyebaran penyakit demam berdarah dengue dengan adanya penyebaran bakteri wolbachia. MATHunesa: Jurnal Ilmiah Matematika, 12(2), 284-291. doi:10.26740/mathunesa.v12n2.p284-291

Artanto, A., Lestari, A. I., Rovik, A., Arianto, B., Yusdiana, D. H., & Chusnaifah, D. L. (2019). Besanan Nyamuk. Yogyakarta: Pusat Kedokteran Tropis Fakultas Kedokteran, Kesehatan Masyarakat dan Keperawatan UGM.

BPS Provinsi DIY. (2024). Proyeksi jumalah penduduk menurut kabupaten/kota di D.I. Yogyakarta (jiwa), 2021-2023.

BPS Provinsi DIY. (2024). Umur harapan hidup saat lahir (UHH) (tahun), 2022-2023.

Dinkes Provinsi DIY. (2016). Buku profil kesehatan D.I. Yogyakarta tahun 2016. Yogyakarta.

Dinkes Provinsi DIY. (2023). Buku profil kesehatan D.I. Yogyakarta tahun 2023. Yogyakarta.

Kemenkes. (2023, 11). Inovasi wolbachia, cara ampuh dan hemat kendalikan demam berdarah. Retrieved from https://kemkes.go.id/eng/inovasi-wolbachia-cara-ampuh-dan-hemat-kendalikan-demam-berdarah

Li, Y., & Liu, L. (2021). The impact of Wolbachia on dengue transmission dynamics in an SEI-SIS model. Nonlinear Analysis: Real World Applications, 62, 1-24. doi:10.1016/j.nonrwa.2021.103363

Lusiyana, N. (2015). Wolbachia sebagai alternatif pengendalian vektor nyamuk Aedes SP. JKKI: Jurnal Kedokteran dan Kesehatan Indonesia, 6(3), i-ii. Retrieved from https://journal.uii.ac.id/JKKI/article/view/3386

Published

2026-01-29

How to Cite

Putri, S. K. H., Saptaningtyas, F. Y., Hartono, Lathifah, F. A., & Takasu , F. (2026). Mathematical Model of Preventing The Spread of Dengue Disease in Yogyakarta Using Wolbachia Mosquitoes. PYTHAGORAS Jurnal Matematika Dan Pendidikan Matematika, 20(1). https://doi.org/10.21831/pythagoras.v20i1.91115

Issue

Section

Articles

Citation Check