Pengembangan keterampilan pemodelan matematis bagi calon guru IPA
Dhita Ayu Permata Sari, Universitas Negeri Surabaya, Indonesia
Totok Suyanto, Universitas Negeri Surabaya, Indonesia
Martini Martini, Universitas Negeri Surabaya, Indonesia
Inzanah Inzanah, Universitas Negeri Surabaya, Indonesia
Abstract
Tingkat keterampilan pemodelan matematis di kalangan mahasiswa calon guru IPA, masih berada dalam kategori cukup dan rendah sehingga perlu ditingkatkan. Pada penelitian ini pengembangan keterampilan pemodelan matematis dilakukan dengan mengaplikasikan model pembelajaran ALLR (activity based, lesson learned, reflection) dalam kegiatan perkuliahan. Penelitian ini dilakukan dengan dua tahap, yaitu tahap persiapan (penyusunan buku model pembelajaran ALLR dan perangkat pembelajaran yang kemudian divalidasi dengan kategori valid) dan tahap penerapan pada Mata Kuliah Dasar-dasar IPA, khususnya materi pegas dan getaran dengan menggunakan desain one shot case study. Subjek penelitian ini adalah mahasiswa calon guru IPA PTN di Jawa Timur Indonesia yang berjumlah 28 mahasiswa. Teknik pengumpulan data dengan menggunakan tes dan rubrik. Data yang diperoleh kemudian dianalisis secara deskriptif kuantitatif dengan representasi yang berupa tabel yang memuat nilai rata-rata, SD, persentase ketuntasan terhadap KKM, dan deskripsi dalam bentuk histogram. Hasil penelitian menunjukkan bahwa Model pembelajaran ALLR dapat digunakan untuk mengembangkan keterampilan matematis bagi calon guru IPA. Adapun saran yang disampaikan adalah keterampilan pemodelan matematis ini masih perlu terus dilatihkan pada berbagai MK yang relevan dengan model pembelajaran ALLR.
Developing of mathematical modelling skills for science pre-service teachers
Abstract
Mathematical modelling skills level of pre service teachers is still on average and low category, so it needs to be improved. This study aimed to develop pre service teachers’ mathematical modelling skills by applying the ALLR (activity based, lesson learn, and reflection) learning model. This study was conducted in two stages, namely preparation stage and application stage. The first stage was the stage to prepare the ALLR learning model book, lesson plan, and student worksheet which have a valid category. Second stage was applied the lesson plan and the students worksheet using ALLR learning model to enhance mathematical modelling skills in the Basic Science Course. The topic discussed in this course was spring and vibration. The design of this study was one shot case study design. The subjects were 28 pre-service teachers of East Java, Indonesia. Data were collected by giving a test and rubrics. Then, the data were analysed descriptively and quantitatively in the form of table consist of the students’ achievement. The results showed that the lesson plan and student worksheet applied using ALLR learning model improved pre-service teachers’ mathematical modelling skills. It is suggested that mathematical modelling skills need to be trained in many other courses by applying ALLR learning model.
Keywords
Full Text:
Fulltext PDFReferences
Angell, C., Kind, P. M., Henriksen, E. K., & Guttersrud, Ø. (2008). An empirical-mathematical modelling approach to upper secondary physics. Physics Education, 43(3), 256–264. https://doi.org/10.1088/0031-9120/43/3/001
Bafadal, I. (2006). Manajemen peningkatan mutu sekolah dasar: Dari sentralisasi menuju desentralisasi. Bumi Aksara.
Bandura, A., & Walters, R. H. (1977). Social learning theory. Prentice-hall.
Butterworth, J., & Thwaites, G. (2005). Thinking Skills. Cambridge: Cambridge
Bobrowsky, M. (2007.) The process of science and its interaction with non-scientific ideas. American Astronomical Society.
Borremeo FR. (2006). Theoretical and empirical differentiations of phases in the modelling process. Zentralblatt für Didaktik der Mathematik 38(2): 86-95.
Buty, C. (2000). Etude d’un apprentissage dans une sequence d’enseignement en optique géométrique à l’aide d’une modélisation informatique. Ph.D. Thesis, Université Lumière Lyon 2, Lyon, France.
Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). An experiment is when you try it andsee if it works’: A study of Grade 7 Students’ Understanding of the Construction of Scientific Knowledge. International Journal of Science Education, 11 (5), 514–529.
Carin, A. A. & Sund, R. B. (1989). Teaching Science through Discovery. Columbus: Merrill Publishing Company.
Chevallard Y. (1989). Le passage de l’arithmétique a l’algèbre dans l’enseignement des mathématiques au collège. Perspectives circulaires: La notion de modélisation. Petit X 19: 43-72
Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86 (2), 175–218.
Chuy, M., Scardamalia, M., Bereiter, C., Prinsen, F., Resendes, M., Messina, R., & Angela Chow, T.C. Y. (2010). Understanding the nature of science and scientific progress: A theory building approach. Canadian Journal of Learning and Technology, 36 (1). Retrieved fromhttps://www.cjlt.ca/index.php/cjlt/article/view/26373/19555
Collette, A. T., & Chiappetta, E. L. (1994). Science instruction in the middle and secondary schools. 2nd Edition. Macmillan Pub. Co.
Diamond, I. (2011). Science education in schools. TLRP Institute of Education University of London.
Duschl, R. (2007). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, Vol. 32, pp. 268-291.
Elby, A., Macrander, C., & Hammer, D. (2016). Epistemic cognition in science. In J. A. Greene, W.A. Sandoval, & I. Bråten (Eds.). Handbook of Epistemic Cognition (pp. 113–127). New York, NY: Routledge.
Ergül. R, Şımşeklı. Y, Çaliş. S, Özdılek. Z, Göçmençelebı. Ş, & Şanli. M. (2011). The effects of inquiry-based science teaching on elementary school students' science process skills and science attitudes. Bulgarian Journal of Science & Education Policy, 5 (1), pp. 48-68.
Gilbert, J. K. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28, 3-17.
Gilbert, J. K. (2004). Models and modeling: routes to more authentic science education, International Journal of Science and Mathematics Education, 2, 115-130.
Gilbert, J. K., & Boulter, C. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer.
Girep. (2006). Modelling in physics and physics education. Online: http://www.girep2006.nl/. Diakses tanggal 2 September 2019.
Greca, I. M., & Moreira, M. A. (2002). Mental, physical and mathematical models in the teaching and learning of physics. Science Education, 86, 106-121.
Guillon A. (1995). Démarches scientifiques en travaux pratiques de physique de DEUG à l’université de Cergy-Pontoise. Didaskalia 6: 113-127.
Gunawan. (2009). Pembelajaran berbasis multimedia interaktif untuk meningkatkan kemampuan generik sains calon guru fisika. Jurnal PIJAR MIPA. Vol.4, No. 2, 46-49.
Gunawan. (2013). Model virtual laboratory fisika modern untuk meningkatkan kemampuan generik sains calon guru fisika. Jurnal Pendidikan dan Pembelajaran. Vol.20, No. 1.
Hartono, A. (2006). Perkembangan peserta didik. Jakarta: PT. Asdi Mahasatya.
Henry M. (2001). Notion de modèle et modélisation dans l’enseignement in Henry M. (Ed.) Autour de modélisation en probabilité (149-159). Besançon: Commission inter-IREM Statistique et Probabilité.
Hestenes, D. (1987). Toward a modelling theory of physics instruction. American Journal of Physics, 55(5), 440-454.
Holmquist, M., & Lingefjärd, T. (2003). Mathematical modeling in teacher education. In Q.
Ye, W. Blum, S. K. Houston, & Q. Jiang (Eds.), Mathematical Modeling in Education
and Culture ICTMA 10: Applications in Science and Technology (pp. 197-208).
Horwood: Chichester.
Koballa, T.R & Chiappetta. E.L. (2010). Science instruction in the middle and secondary schools. USA: Pearson Education.
Kolb, A. Y., & Kolb, D. A. (2005). Learning style and learning spaces: enhancing experiential learning in higher education. Academy of Management Learning & Education, 4(2), 193-212.
Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23 (2), 285–302.
Levy, F. & Murnane, R. J. (2005). The new division of labor: how computers are creating the next job market. Princeton, NJ: Princeton University Press.
Lundgren, L. (1994). Cooperative learning in the science classroom. Macmillan/ McGraw-Hill.
Mulyani, S., Liliasari, L., Wiji, W., Hana, M. N., & Nursa’adah, E. (2016). Improving students' generic skill in science through chemistry learning using ICT-based media on reaction rate and osmotic pressure material. Jurnal Pendidikan IPA Indonesia, 5(1), 150-156.
National Research Council (NRC). (1996). National science education standarts. Washington, DC: National Academy Press.
OECD. (2016). PISA 2016 assessment and analytical framework: science, reading, mathematic and financial literacy. Paris: PISA OECD Publising.
Ottesen, J. (2001). Do not ask what mathematics can do for modeling. In D. Holton (Ed.), The teaching and learning of mathematics at the university level. An ICMI study (pp.335 – 346). Dordrecht, the Netherlands: Kluwer
Rachmawati. (2013). Pengaruh pendekatan pembelajaran kontekstual terhadap kemampuan koneksi matematis siswa pada materi bangun ruang. Gorontalo: FMIPA Universitas Negeri Gorontalo.
Rahayu, N. (2017). Pengaruh pembelajaran dengan pendekatan inquiry terhadap penguasaan konsep dan scientific skillmateri sistem pencernaan. Jurnal Inovasi Pendidikan IPA, 3(1), 70-77.
Rahman, T. (2016). Kemampuan generik calon guru dalam merencanakan praktikum (studi kasus pada praktikum fisiologi tumbuhan di LPTK). Online: http://file.upi.edu/Direktori/SPS/PRODI.PENDIDIKAN_IPA/196201151987031-TAUFIK_RAHMAN/PROFIL_KEMAMPUAN_GENERIK_AWAL_PERENCANAAN_PRAKTIKUM_CALON_GURU.pdf.
Roth, W. M., & Roychoudhury, A. (1993). The development of science process skills in authentic contexts. Journal of Research in Science Teaching, 30(2), 127–152.
Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans. Oxford university press.
Sadiqin, I.K., Santoso, U.T., & Sholahuddin A. (2017). Pemahaman konsep IPA siswa SMP melalui pembelajaran problem solving pada topik perubahan benda-benda di sekitar kita. Jurnal Inovasi Pendidikan IPA, 3(1), 52-62.
Saglam A (2004). Les équations différentielles en mathématiques et en physique: Etude des conditions de leur enseignement et caractérisation des rapports personnels des étudiants de première année d’université à cet objet de savoir. Ph.D. Thesis, Université Joseph Fourier, Grenoble-France.
Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12 (1), 5–51.
Stewart, V. (2010). A classroom as wide as the world. in curriculum 21: Essential education for a changing world, ed. H. Hayes Jacobs, 97–114. Alexandria, VA: Association for Supervision and Curriculum Development.
Sudarmin. (2006). Pengembangan model pembelajaran kimia organik dan keterampilan generik sains bagi calon guru kimia. Disertasi Pend. IPA. Sekolah Pasca Sarjana UPI Bandung. Tidak diterbitkan.
Suriasumantri, J. S. (2010). Filsafat ilmu. Jakarta: Pestaka Sinar Harapan.
Tivani, I. & Paidi. (2016). Pengembangan LKS biologi berbasis masalah untukmeningkatkan kemampuan pemecahan masalah dan karakter peduli lingkungan. Jurnal Inovasi Pendidikan IPA, 2(1), 35-45.
Tregidgo, D. & Ratcliffe, M. (2000). Penggunaan model untuk meningkatkan pembelajaran murid tentang sel. Sekolah Ilmu Review, 81, 53-59.
Tuminaro, J., Redish, E.F. (2004). Understanding students’ poor performance on mathematical problem solving in physics. Physics Education Research Conference 2003 Part of the PER Conference series, 720, 113-116. Online: http://www.physics.umd.edu/perg/pa-pers/tuminaro/madison_proceedings. pdf. Diakses tanggal 27 Agustus 2019.
UNESA. (2018) Buku pedoman akademik Unesa. Surabaya: Unesa University Press.
Van Driel, J. H. & Verloop, N. (1999). Teachers’ knowledge of models and modeling in science. International Journal of Science Education, 21, 1141-1153.
Widodo, W. (2011). Pengembangan model pembelajaran “MiKiR” pada perkuliahan fisika dasar untuk meningkatkan keterampilan generik sains dan pemecahan masalah caon guru smk program keahlian tata boga. Disertasi. Sekolah Pascasarjana UPI, tidak diterbitkan.
Widodo, W., Suyanto, T., Setyowati, R.R.N., Martini, Sari, D.A.P., Inzanah. (2018). Model pembelajaran ALLR. Unesa University Press.
Widodo, W., Sari, D.A.P, Martini, dan Suyanto, T. (2019). Strengthening pre-service teachers’ character: the application of allr learning model in basic science subject. Advances in Social Science, Education and Humanities Research, 335: 362-367.
Widowati & Sutimin. (2007). Pemodelan matematika. Semarang: Universitas Diponegoro
Wilmarth, S. (2010). Five socio-technology trends that change everything in learning and teaching. in curriculum 21: Essential education for a changing world, ed. Heidi Hayes Jacobs, 80–96. Alexandria, VA: Association for Supervision and Curriculum Development.
Windschitl, M. (2009). Cultivating 21st century skills in science learners: how systems of teacher preparation and professional development will have to evolve. Presentation given at the National Academies of Science Workshop on 21st Century Skills, Washington, DC.
Yerigan. (2008). Getting active in the classroom. Journal of College Teaching & Learning, 5(6): 20-24.
Zitzewitz, P.W. (1999). Glencoe physics. New York: McGraw-Hill.
DOI: https://doi.org/10.21831/jipi.v6i2.27042
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Jurnal Inovasi Pendidikan IPA
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Inovasi Pendidikan IPA indexed by:
Jurnal Inovasi Pendidikan IPA by http://journal.uny.ac.id/index.php/jipi/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All rights reserved. p-ISSN: 2406-9205 | e-ISSN: 2477-4820
View My Stats