Geostatistical Mapping of Groundwater Salinity and Seawater Intrusion in Coastal Aquifers of Jember Regency Using Physicochemical Parameters and Seawater Fraction

Muhammad Asyroful Mujib, University of Jember, Indonesia
Sri Astutik, University of Jember, Indonesia
Bejo Apriyanto, University of Jember, Indonesia
Ikhlas Nur Muhammad, The Republic of Indonesian Defense University, Indonesia, Indonesia
Audina Anugra Fitra, University of Jember, Indonesia

Abstract


Seawater intrusion significantly impacts groundwater quality in coastal areas, presenting a critical challenge for sustainable water resource management. This study aimed to map groundwater salinity in the southern coastal region of Jember Regency by employing simple physicochemical parameters, including Electrical Conductivity (EC), Total Dissolved Solids (TDS), and seawater fraction (fsea), which was determined using chloride (Cl-) concentrations. Fieldwork was conducted at 211 well sites across ten villages, and the sea-freshwater interface was analyzed using the Ghyben-Herzberg principle. Geostatistical analysis using Ordinary Kriging was applied to spatially map the salinity parameters. Results indicated that 83% of groundwater samples were classified as fresh, 16% as slightly saline, and 1% as moderately saline. Areas near Payangan and Watu Ulo Beaches exhibited higher seawater fractions, with fsea values up to 23%, indicating significant seawater mixing. These findings underscore the need for targeted groundwater management strategies to mitigate seawater intrusion in this region

Keywords


Seawater intrusion; Groundwater salinity; Physicochemical; Seawater fraction; Geostatistical analysis

Full Text:

PDF

References


Abu Al Naeem, M. F., Yusoff, I., Ng, T. F., Maity, J. P., Alias, Y., May, R., & Alborsh, H. (2019). A study on the impact of anthropogenic and geogenic factors on groundwater salinization and seawater intrusion in Gaza coastal aquifer, Palestine: An integrated multi-techniques approach. Journal of African Earth Sciences, 156, 75–93. https://doi.org/https://doi.org/10.1016/j.jafrearsci.2019.05.006

Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. CRC press.

Arslan, H. (2014). Estimation of spatial distrubition of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods. Environmental Monitoring and Assessment, 186(8), 5123–5134. https://doi.org/10.1007/s10661-014-3764-z

Badan Nasional Penanggulangan Bencana (BNPB). (2023). Indeks Risiko Bencana Indonesia Tahun 2022 (R. Yunus, Ed.; 1st ed., Vol. 1). Badan Nasional Penanggulangan Bencana. https://inarisk.bnpb.go.id/IRBI-2022/mobile/index.html#p=1

Bear, J., & Cheng, A. H.-D. (2010). Modeling groundwater flow and contaminant transport (Vol. 23). Springer.

Behera, A. K., Chakrapani, G. J., Kumar, S., & Rai, N. (2019). Identification of seawater intrusion signatures through geochemical evolution of groundwater: a case study based on coastal region of the Mahanadi delta, Bay of Bengal, India. Natural Hazards, 97(3), 1209–1230. https://doi.org/10.1007/s11069-019-03700-6

BPBD Jawa Timur. (2024). Laporan Harian PUSDALOPS.

Custodio, E. (1997). Seawater intrusion in coastal aquifers, guidelines for study, monitoring and control. Food and Agriculture Organization of the United Nation, Editor. Water Report, 11.

Dong, L., Shimada, J., Kagabu, M., & Yang, H. (2014). Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea. Environmental Monitoring and Assessment, 187(1), 4187. https://doi.org/10.1007/s10661-014-4187-6

Guo, J., Ma, Y., Ding, C., Zhao, H., Cheng, Z., Yan, G., & You, Z. (2023). Impacts of Tidal Oscillations on Coastal Groundwater System in Reclaimed Land. Journal of Marine Science and Engineering, 11(10). https://doi.org/10.3390/jmse11102019

Hasan, S. S., Salem, Z. E., & Sefelnasr, A. (2023). Assessment of Hydrogeochemical Characteristics and Seawater Intrusion in Coastal Aquifers by Integrating Statistical and Graphical Techniques: Quaternary Aquifer, West Nile Delta, Egypt. In Water (Vol. 15, Issue 10). https://doi.org/10.3390/w15101803

Hem, J. D. (1985). Study and Interpretation of the Chemical Characteristics of Natural Water (3rd Editio). US Geological Survey Water-Supply Paper 2254.

Houben, G. (2018). Annotated translation of “Die Wasserversorgung einiger Nordseebäder [The water supply of some North Sea spas]” by Alexander Herzberg (1901). Hydrogeology Journal, 26(6), 1789–1799. https://doi.org/10.1007/s10040-018-1772-8

Hussain, M. S., Abd-Elhamid, H. F., Javadi, A. A., & Sherif, M. M. (2019). Management of Seawater Intrusion in Coastal Aquifers: A Review. Water, 11(12). https://doi.org/10.3390/w11122467

Jasechko, S., Perrone, D., Seybold, H., Fan, Y., & Kirchner, J. W. (2020). Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nature Communications, 11(1), 3229. https://doi.org/10.1038/s41467-020-17038-2

Kazakis, N., Pavlou, A., Vargemezis, G., Voudouris, K. S., Soulios, G., Pliakas, F., & Tsokas, G. (2016). Seawater intrusion mapping using electrical resistivity tomography and hydrochemical data. An application in the coastal area of eastern Thermaikos Gulf, Greece. Science of The Total Environment, 543, 373–387. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.11.041

Kim, J.-H., Lee, J., Cheong, T.-J., Kim, R.-H., Koh, D.-C., Ryu, J.-S., & Chang, H.-W. (2005). Use of time series analysis for the identification of tidal effect on groundwater in the coastal area of Kimje, Korea. Journal of Hydrology, 300(1), 188–198. https://doi.org/https://doi.org/10.1016/j.jhydrol.2004.06.004

Koussis, A. D., Mazi, K., Riou, F., & Destouni, G. (2015). A correction for Dupuit–Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers. Journal of Hydrology, 525, 277–285. https://doi.org/https://doi.org/10.1016/j.jhydrol.2015.03.047

Kumar, P. J. S., Jegathambal, P., Babu, B., Kokkat, A., & James, E. J. (2020). A hydrogeochemical appraisal and multivariate statistical analysis of seawater intrusion in point calimere wetland, lower Cauvery region, India. Groundwater for Sustainable Development, 11, 100392. https://doi.org/https://doi.org/10.1016/j.gsd.2020.100392

Kura, N. U., Ramli, M. F., Ibrahim, S., Sulaiman, W. N. A., & Aris, A. Z. (2014). An integrated assessment of seawater intrusion in a small tropical island using geophysical, geochemical, and geostatistical techniques. Environmental Science and Pollution Research, 21(11), 7047–7064. https://doi.org/10.1007/s11356-014-2598-0

Lestari, D., Astutik, S., & Kurnianto, F. A. (2024). Spatial Distribution of Seawater Intrusion Based on Various Lithologies in Pesanggaran Subdistrict, Banyuwangi Indonesia. Forum Geografi 38 (1), 110-121.

Lyles, J. R. (2000). Is seawater intrusion affecting ground water on Lopez Island, Washington? U.S. Geological Survey, USGS Fact(057–00), 9.

Manivannan, V., & Elango, L. (2019). Seawater intrusion and submarine groundwater discharge along the Indian coast. Environmental Science and Pollution Research, 26(31), 31592–31608. https://doi.org/10.1007/s11356-019-06103-z

Muhammad, I. N., Astutik, S., Indarto, I., Mujib, M. A., Pangastuti, E.I., & Kurnianto, F, A. (2024). Evaluation of Groundwater Salinity And Suitability For Irrigation Purposes On South Coastal Jember Regency. Water Conservation and Management, 8(3), 267-273.

Mujib, M. A., Adji, T. N., Suma, N. N., Ikhsan, F. A., & Indartin, T. R. D. (2020). The quality and usability of spring water for irrigation (case study: Ngerong Spring, Rengel Karst, Tuban, East Java). IOP Conference Series: Earth and Environmental Science, 485(1). https://doi.org/10.1088/1755-1315/485/1/012025

Ouhamdouch, S., Bahir, M., & Ouazar, D. (2020). Seawater intrusion into coastal aquifers from semi-arid environments, Case of the alluvial aquifer of Essaouira basin (Morocco). Carbonates and Evaporites, 36(1), 5. https://doi.org/10.1007/s13146-020-00663-9

Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B., & Simmons, C. T. (2019). Vulnerability mapping of coastal aquifers to seawater intrusion: Review, development and application. Journal of Hydrology, 570, 555–573. https://doi.org/https://doi.org/10.1016/j.jhydrol.2018.12.021

Post, V. E. A., Houben, G. J., & van Engelen, J. (2018). What is the Ghijben-Herzberg principle and who formulated it? Hydrogeology Journal, 26(6), 1801–1807. https://doi.org/10.1007/s10040-018-1796-0

Recinos, N., Kallioras, A., Pliakas, F., & Schuth, C. (2015). Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environmental Earth Sciences, 73(3), 1017–1032. https://doi.org/10.1007/s12665-014-3452-x

Sapei, T., Suganda, A. H., Astadiredja, K. A. S., & Suharsono. (1992). Geological map of the Jember quadrangle, Jawa (pp. 1607–6).

Sathish, S., & Elango, L. (2016). An integrated study on the characterization of freshwater lens in a coastal aquifer of Southern India. Arabian Journal of Geosciences, 9(14), 643. https://doi.org/10.1007/s12517-016-2656-7

Seenipandi, K., Nainarpandian, C., Kandathil, R. K., & Sellamuthu, S. (2019). Seawater intrusion vulnerability in the coastal aquifers of southern India—an appraisal of the GALDIT model, parameters’ sensitivity, and hydrochemical indicators. Environmental Science and Pollution Research, 26(10), 9755–9784. https://doi.org/10.1007/s11356-019-04401-0

Shin, K., Koh, D.-C., Jung, H., & Lee, J. (2020). The Hydrogeochemical Characteristics of Groundwater Subjected to Seawater Intrusion in the Archipelago, Korea. In Water (Vol. 12, Issue 6). https://doi.org/10.3390/w12061542

Singhal, B., & Gupta, R. (2010). Applied Hydrogeology of Fractured Rocks. In Applied Hydrogeology of Fractured Rocks by B.B.S. Singhal and R.P. Gupta. Netherlands: Springer, 2010. ISBN: 978-90-481-8798-0. https://doi.org/10.1007/978-94-015-9208-6

Suwarti, T., & Suharsono. (1992). Geological map of the Lumajang quadrangle, Jawa (pp. 1607–5).

Tomaszkiewicz, M., Abou Najm, M., & El-Fadel, M. (2014). Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environmental Modelling & Software, 57, 13–26. https://doi.org/https://doi.org/10.1016/j.envsoft.2014.03.010

Vetrimurugan, E., & Elango, L. (2015). Groundwater Chemistry and Quality in an Intensively Cultivated River Delta. Water Quality, Exposure and Health, 7(2), 125–141. https://doi.org/10.1007/s12403-014-0133-7

Wang, Z., Wang, S., Liu, W., Su, Q., Tong, H., Xu, X., Gao, Z., & Liu, J. (2020). Hydrochemical Characteristics and Irrigation Suitability Evaluation of Groundwater with Different Degrees of Seawater Intrusion. In Water (Vol. 12, Issue 12). https://doi.org/10.3390/w12123460

Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C. T., & Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51, 3–26. https://doi.org/https://doi.org/10.1016/j.advwatres.2012.03.004

Wilopo, W., Risanti, R., Susatio, R., & Putra, D. P. E. (2021). Seawater intrusion assessment and prediction of sea-freshwater interface in Parangtritis coastal aquifer, South of Yogyakarta Special Province, Indonesia. Journal of Degraded and Mining Lands Management, 8(3 SE-Articles), 2709–2718. https://doi.org/10.15243/jdmlm.2021.083.2709

World Health Orgnization (WHO). (2019). Healthy environments for healthier populations: Why do they matter, and what can we do? WHO PUBLICATION.

Xie, Y., Chen, T., Lei, M., Yang, J., Guo, Q., Song, B., & Zhou, X. (2011). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere, 82(3), 468–476. https://doi.org/https://doi.org/10.1016/j.chemosphere.2010.09.053

Zahroh, F., Mujib, M. A., Astutik, S., Apriyanto, B., & Pangastuti, E. I. (2024). Analysis of the Spatial Distribution of Seawater Intrusion Using a Hydrogeochemical Approach: A Study of the Coastal Geology of Kebumen Regency, Indonesia. Geosfera Indonesia, 9(2), 228. https://doi.org/10.19184/geosi.v9i2.34885

Zamroni, A., Sugarbo, O., Trisnaning, Paramitha Tedja; Sagala, S. T., & Putra, A. S. (2021). Geochemical Approach for Seawater Intrusion Assessment in the Area around Yogyakarta International Airport, Indonesia. Iraqi Geological Journal, 54(1F), 1–11.

Zhang, X., Dong, F., Dai, H., Hu, B. X., Qin, G., Li, D., Lv, X., Dai, Z., & Soltanian, M. R. (2020). Influence of lunar semidiurnal tides on groundwater dynamics in estuarine aquifers. Hydrogeology Journal, 28(4), 1419–1429. https://doi.org/10.1007/s10040-020-02136-8




DOI: https://doi.org/10.21831/gm.v22i2.77550

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Asyroful Mujib, Sri Astutik, Bejo Apriyanto, Ikhlas Nur Muhammad, Audina Anugra Fitra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 Supervised by:

 

Geomedia: Majalah Ilmiah dan Informasi Kegeografian indexing by
  

Creative Commons License
Geo Media: Majalah Ilmiah dan Informasi Kegeografian is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uny.ac.id/index.php/geomedia.

 

 View My Stats