Distribusi spasial nitrat air tanah di Kecamatan Nanggulan, Kulon Progo, Yogyakarta
Sadewa Purba Sejati, Program Studi Geografi, Fakultas Sains dan Teknologi, Universitas Amikom Yogyakarta, Indonesia
Abstract
Residential areas in Nanggulan sub-district are mainly adjacent to irrigated rice fields. Groundwater in settlements close to irrigated rice fields has the potential to be contaminated with nitrates. Studies on the spatial distribution of groundwater nitrate around irrigated rice fields have never been conducted in Nanggulan District, Kulon Progo Regency. The study was conducted to determine the spatial distribution of nitrates in groundwater in Nanggulan District, Kulon Progo Regency. Nitrate data were collected through groundwater sample testing. The location of groundwater samples is determined using a systematic random sampling. The data was analyzed by spatial interpolation method through Arc GIS 10.6 software. The results showed variations in the spatial distribution of nitrates in the study area. Most of the study area had nitrate levels of 5-10 mg / L distributed in the south. Nitrates exceeding ten mg/L were distributed in the northern part of the study area. Based on research that has been conducted, it is known that 41% of groundwater in the study area is contaminated with nitrates, while 59% of groundwater is not contaminated with nitrates. Spatially, nitrate-contaminated groundwater is found in parts of Tanjungharo Village, some Wijimulyo Village, some Donomulyo Village, some Jatisarono Village, and some Kembang Villages. Groundwater not contaminated with nitrates is found in Banyuroto Village and most areas of Donomulyo Village. Factors that cause nitrate-contaminated groundwater are the location of excavated wells close to intensively fertilized irrigated rice fields, groundwater contained in geological formations of young Merapi volcano deposits, and groundwater depth of less than 5 meters.
Keywords
Full Text:
PDFReferences
Alamne, S. B., Assefa, T. T., Belay, S. A., & Hussein, M. A. (2022). Mapping groundwater nitrate contaminant risk using the modified DRASTIC model: a case study in Ethiopia. Environmental Systems Research, 11(1). https://doi.org/10.1186/s40068-022-00253-9
Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 1–24. https://doi.org/10.1007/s42452-021-04521-8
Dewi, S., Joko, T., & Dewanti, N. (2016). Analisis Risiko Kesehatan Lingkungan Pencemaran Nitrat (No3) Pada Air Sumur Gali Di Kawasan Pertanian Desa Tumpukan Kecamatan Karangdowo Kabupaten Klaten. Jurnal Kesehatan Masyarakat (e-Journal), 4(5), 204–212.
Dixon, C., & Leach, B. (2015). Metode Pengambilan Sampel untuk Penelitian Geografi (A. D. Martono, Ed.). Yogyakarta: Ombak.
Effendi, H. (2003). Telaah Kualitas Air. Yogyakarta: Kanisius.
Handayani, M., Rahayu, D. D., Azizah, F., Ikrila, I., Faradilla, I. T., Nabilah, R., & Sulistiyorini, D. (2022). Analisis Risiko Kesehatan Lingkungan Kandungan Nitrat Pada Air Sumur Warga Kota Depok. Jurnal Sanitasi Lingkungan, 2(1), 14–20. https://doi.org/10.36086/jsl.v2i1.1143
Indonesia, K. K. R. Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanisitas, Kolam Renang, Solus Per Aqua, dan Pemandian Umum. Pemerintah Republik Indonesia. , (2017).
Killpack, S. C., & Bucholz, D. (2022). Nitrogen in the Environment: Leaching. Retrieved January 13, 2023, from Extension: University of Missouri website: https://extension.missouri.edu/publications/wq262#:~:text=Nitrate is very mobile and easily leaches with water.,well as depth to groundwater.
Liu, J., Jiang, L. H., Zhang, C. J., Li, P., & Zhao, T. K. (2017). Nitrate-nitrogen contamination in groundwater: Spatiotemporal variation and driving factors under cropland in Shandong Province, China. IOP Conference Series: Earth and Environmental Science, 82(1). https://doi.org/10.1088/1755-1315/82/1/012059
Longley, P. A., Goddchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic Information Science and Systems. New Jersey: John Willey and Son Inc.
Muryanto, Suntoro, Gunawan, T., Setyono, P., Nurkholis, A., & Wijayanti, N. F. (2019). Distribution of nitrate household waste and groundwater flow direction around Code River, Yogyakarta, Indonesia. Indonesian Journal of Geography, 51(1), 54–61. https://doi.org/10.22146/ijg.43420
Novianto, A., & Sejati, S. P. (2023). Analysis of Groundwater Potential Using Dynamic Discharge Method in Temon. Jurnal Sains Informasi Geografis (J SIG), 6(1), 38–48.
Pertapa. (2019). Pengendalian OPT di Jatisarono. Retrieved February 15, 2022, from https://pertanian.kulonprogokab.go.id/detil/395/pengendalian-opt-di-jatisarono
Progo, B. K. K. (2022). Kapanewon Nanggulan Dalam Angka 2021. BPS Kabupaten Kulon Progo.
Rahman, A., Mondal, N. C., & Tiwari, K. K. (2021). Anthropogenic nitrate in groundwater and its health risks in the view of background concentration in a semi arid area of Rajasthan, India. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-88600-1
Ramadhika, R., & Hendrayana, H. (2016). Prioritas pengelolaan zona konservasi air tanah di Kabupaten Kulon Progo, Daerah Istimewa Yogyakarta. Jurnal Teknik Geologi, 1–20.
Rath, S., Zamora-Re, M., Graham, W., Dukes, M., & Kaplan, D. (2021). Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agricultural Water Management, 246(December 2020), 106634. https://doi.org/10.1016/j.agwat.2020.106634
Ratih, S., Awanda, H. N., Saputra, A. C., & Ashari, A. (2018). Hidrogeomorfologi mataair kaki Vulkan Merapi bagian selatan. Geomedia: Majalah Ilmiah Dan Informasi Kegeografian, 16(1). https://doi.org/10.21831/gm.v16i1.20977
Sejati, S. P. (2019). Perbandingan akurasi metode idw dan kriging dalam pemetaan muka air tanah. Majalah Geografi Indonesia, 33(2), 49–57. https://doi.org/10.22146/mgi.41473
Sidiropoulos, P., Tziatzios, G., Vasiliades, L., Mylopoulos, N., & Loukas, A. (2019). Groundwater Nitrate Contamination Integrated Modeling for Climate and Water Resources Scenarios: The Case of Lake Karla Over-Exploited Aquifer. Water, 11(1201).
Torfs, P. (2015). A Global Assessment of Nitrate Contamination in Groundwater.
Vinod, P. N., Chandramouli, P. N., & Koch, M. (2015). Estimation of Nitrate Leaching in Groundwater in an Agriculturally Used Area in the State Karnataka, India, Using Existing Model and GIS. Aquatic Procedia, 4(Icwrcoe), 1047–1053. https://doi.org/10.1016/j.aqpro.2015.02.132
Xu, S., Wei, Y., Laghari, A. H., Yang, X., & Wang, T. (2021). Modelling effect of different irrigation methods on spring maize yield, water and nitrogen use efficiencies in the North China Plain. Mathematical Biosciences and Engineering, 18(6), 9651–9668. https://doi.org/https://doi.org/10.3934/mbe.2021472
Yogyakarta, B. P. B. D. P. D. I. (n.d.). Peta Geologi Kabupaten Kulon Progo.
Yunus, H. S. (2009). Metodologi Penelitian Wilayah Kontemporer. Yogyakarta: Pustaka Pelajar.
Zendehbad, M., Mostaghelchi, M., Mojganfar, M., Cepuder, P., & Loiskandl, W. (2022). Nitrate in groundwater and agricultural products: intake and risk assessment in northeastern Iran. Environmental Science and Pollution Research, 29(52), 78603–78619. https://doi.org/10.1007/s11356-022-20831-
DOI: https://doi.org/10.21831/gm.v21i2.63428
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Fajrul Falah, Sadewa Purba Sejati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Supervised by:
Geomedia: Majalah Ilmiah dan Informasi Kegeografian indexing by
Geo Media: Majalah Ilmiah dan Informasi Kegeografian is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uny.ac.id/index.php/geomedia.