Bagaimana hasil penyetaraan paket tes USBN pada mata pelajaran matematika dengan teori respon butir?

Eri Yusron, Program Studi Penelitian dan Evaluasi Pendidikan, Pascasarjana, Universitas Negeri Yogyakarta, Indonesia
Heri Retnawati, Jurusan Pendidikan Matematika, Fakultas Matematika, dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia
Ibnu Rafi, Program Studi Pendidikan Matematika, Pascasarjana, Universitas Negeri Yogyakarta, Indonesia

Abstract


Dalam melakukan standarisasi pendidikan di Indonesia maka dilakukan Ujian Sekolah Berstandar Nasional (USBN).Karena perangkat tes yang digunakan dalam USBN tersebut sebagian besar butir tesnya dikembangkan oleh guru, perangkat tes yang diujikan kepada siswa di daerah yang satu akan berbeda dengan daerah yang lainnya meskipun sama-sama mengacu pada kisi-kisi dari pemerintah. Oleh karena itu perlu dilakukan penyetaraan perangkat tersebut. Penelitian deskriptif eksploratif dengan pendekatan kuantitif ini bertujuan untuk mendeskripsikan kesetaraan perangkat USBN tahun 2018/2019 pada mata pelajaran matematika wajib. Pengumpulan data dilakukan melalui dokumentasi respon siswa pada USBN 2018/2019 untuk mata pelajaran matematika wajib. Respon siswa tersebut berasal dari lima paket soal dari empat sekolah menengah atas di Provinsi D.I. Yogyakarta dan Kalimantan Selatan. Data yang terkumpul dianalisis menggunakan teknik equating berdasarkan teori respon butir dengan metode mean-mean, mean-sigma, Haebara, dan Stocking Lord. Estimasi parameter butir dan equating dilakukan dengan bantuan program R. Hasil penyetaraan menggunakan empat metode menunjukkan bahwa lima paket tes USBN 2018/2019 untuk mata pelajaran matematika wajib cenderung setara satu sama lain dan penyetaraan menggunakan metode Haebara menghasilkan kesetaraan yang lebih baik dibandingkan dengan tiga metode equating lainnya. Dalam artikel ini juga disajikan contoh butir sulit beserta peluangnya untuk digunakan sebagai referensi dalam meningkatkan kualitas pembelajaran matematika.

 

How are the results of the equating of test packages of mathematics USBN with item response theory?


Abstract

In standardizing education in Indonesia, then Ujian Sekolah Berstandar Nasional (USBN) or National-Standardized School Examination was conducted. Because most of the test items contained in the test packages which were used in USBN were developed by the teachers, the test packages which were administered to students in a region would be different from other regions. Therefore, there was a need to do equating towards those test packages. This exploratory descriptive research with a quantitative approach was focused on describing the equality of test packages of USBN year 2018/2019 for compulsory mathematics subject. Data collection was done through documentation of students’ responses to the USBN 2018/2019 for compulsory mathematics subject. These students’ responses were collected from five test packages from four senior high schools in Province of Special Region of Yogyakarta and South Kalimantan, Indonesia. The collected data were analyzed by using an equating technique based on the item response theory with the methods of mean-mean, mean-sigma, Haebara, and Stocking Lord. The item parameter estimation and equating were conducted with the aid of the R program. The results of equating showed that the five test packages of the USBN 2018/2019 for compulsory mathematics subject tend to be equal to each other and the equating through Haebara method yields better equality than the other three equating methods. This article also presents the example of a difficult item as well as its opportunity to be used as a reference for enhancing the quality of mathematics learning.

Keywords


equating; teori respon butir; perangkat tes matematika; USBN; item response theory; national-standardized school examination;

Full Text:

Fulltext PDF

References


Albab, I. U., Hartono, Y., & Darmawijoyo, D. (2014). Kemajuan belajar siswa pada geometri transformasi menggunakan aktivitas refleksi geometri. Jurnal Cakrawala Pendidikan, 3(3). https://doi.org/10.21831/cp.v3i3.2378

Antara, A. A. P., & Bastari, B. (2015). Penyetaraan vertikal dengan pendekatan klasik dan item response theory pada siswa sekolah dasar. Jurnal Penelitian Dan Evaluasi Pendidikan, 19(1), 13–24. https://doi.org/10.21831/pep.v19i1.4551

Aşiret, S., & Sünbül, S. Ö. (2016). Investigating test equating methods in small samples through various factors. Educational Sciences: Theory & Practice, 16(2), 647–668. https://doi.org/10.12738/estp.2016.2.2762

Azwar, S. (2012). Validitas dan reabilitas (4th ed.). Pustaka Pelajar.

Badan Standar Nasional Pendidikan. (2018). Prosedur operasional standar penyelenggaraan ujian sekolah bestandar nasional (POS USBN).

Battauz, M. (2015). equateIRT: An R package for IRT test equating. Journal of Statistical Software, 68(7), 1–22. https://doi.org/10.18637/jss.v068.i07

Black, P., & Wiliam, D. (2018). Classroom assessment and pedagogy. Assessment in Education: Principles, Policy & Practice, 25(6), 1–25. https://doi.org/10.1080/0969594X.2018.1441807

Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1–29. https://doi.org/10.18637/jss.v048.i06

Chittenden, E. (1991). Authentic assessment, evaluation, and documentation. In V. Perrone (Ed.), Expanding student assessment (pp. 22–31). Association for Supervision and Curriculum Development.

Crocker, L. M., & Algina, J. (2006). Introduction to classical and modern test theory (2nd ed.). Cengage Learning.

Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2013). Mathematical connections and their relationship to mathematics knowledge for teaching geometry. School Science and Mathematics, 113(3), 120–134.

Fane, A., & Sugito, S. (2019). Pengaruh keterlibatan orang tua, perilaku guru, dan motivasi belajar terhadap prestasi belajar matematika siswa. Jurnal Riset Pendidikan Matematika, 6(1), 53–61. https://doi.org/10.21831/jrpm.v6i1.15246

García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227–252. https://doi.org/10.1080/0020739X.2017.1355994

Hadi, S., Retnawati, H., Munadi, S., Apino, E., & Wulandari, N. F. (2018). The difficulties of high school students in solving higher-order thinking skills problems. Problems of Education in the 21st Century, 76(4), 520–532.

Haebara, T. (1980). Equating logistic ability scales by a weighted least squares method. Japanese Psychological Research, 22(3), 144–149. https://doi.org/10.4992/psycholres1954.22.144

Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Springer Science+Business Media. https://doi.org/10.1007/978-94-017-1988-9

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Sage.

Herkusumo, A. P. (2011). Penyetaraan (equating) Ujian Akhir Sekolah Berstandar Nasional (UASBN) dengan teori tes klasik. Jurnal Pendidikan Dan Kebudayaan, 17(4), 455–471. https://doi.org/10.24832/jpnk.v17i4.41

Iriyadi, D., Naga, D. S., & Rahayu, W. (2019). Equating method for prevent discrimination in classroom. Journal of Educational Science and Technology, 5(2), 100–109. https://doi.org/10.26858/est.v5i2.9258

Kartikasari, A., & Widjajanti, D. B. (2017). The effectiveness of problem-based learning approach based on multiple intelligences in terms of student’s achievement, mathematical connection ability, and self-esteem. Journal of Physics: Conference Series, 812(1), 012097. https://doi.org/10.1088/1742-6596/812/1/012097

Kartowagiran, B., Munadi, S., Retnawati, H., & Apino, E. (2018). The equating of battery test packages of Mathematics National Examination 2013-2016. SHS Web of Conferences, 42(1), 1–6. https://doi.org/10.1051/shsconf/20184200022

Kolen, M. J., & Brennan, R. L. (1995). Test equating: Methods and practices. Springer-Verlag New York. https://doi.org/10.1007/978-1-4757-2412-7

Kolen, M. J., & Brennan, R. L. (2014). Test equating, scaling, and linking: Methods and practices (3rd ed.). Springer. https://doi.org/10.1007/978-1-4939-0317-7

Kurniawan, D., & Wustqa, D. U. (2014). Pengaruh perhatian orangtua, motivasi belajar, dan lingkungan sosial terhadap prestasi belajar matematika siswa SMP. Jurnal Riset Pendidikan Matematika, 1(2), 176. https://doi.org/10.21831/jrpm.v1i2.2674

Loyd, B. H., & Hoover, H. D. (1980). Vertical equating using the Rasch model. Journal of Educational Measurement, 17(3), 179–193. https://doi.org/10.1111/j.1745-3984.1980.tb00825.x

Malasari, P. N., Nindiasari, H., & Jaenudin, J. (2017). Preface: International Conference on Recent Trends in Physics (ICRTP 2016). Journal of Physics: Conference Series, 812(1), 1–6. https://doi.org/10.1088/1742-6596/812/1/012025

Marco, G. L. (1977). Item characteristic curve solutions to three intractable testing problems. Journal of Educational Measurement, 14(2), 139–160. https://doi.org/10.1111/j.1745-3984.1977.tb00033.x

Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). National Center for Research to Improve Post secondary Teaching and Learning.

Rahayu, W. (2015). Metode estimasi parameter dan metode equating pada ukuran sampel kecil berdasarkan item respons theory. Prosiding Semirata 2015 Bidang MIPA BKS-PTN Barat, 315–324.

Retnawati, H. (2014). Teori respons butir dan penerapannya: Untuk peneliti, praktisi pengukuran dan pengujian, mahasiswa pascasarjana. Nuha Medika.

Retnawati, H. (2016). Perbandingan metode penyetaraan skor tes menggunakan butir bersama dan tanpa butir besama. Jurnal Kependidikan: Penelitian Inovasi Pembelajaran, 46(2), 164–178. https://doi.org/10.21831/jk.v46i2.10383

Retnawati, H., Hadi, S., Munadi, S., Hadiana, D., Muhardis, M., Apino, E., Djidu, H., Rafi, I., Yusron, E., & Rosyada, M. N. (2019). When national examination no longer determining graduation, will students accomplish it seriously? Indonesian Journal of Educational Assesment (IJEA), 2(2), 40–49. https://doi.org/10.26499/ijea.v2i2.34

Rijanto, T. (2011). Metode penyetaraan skor dan ukuran sampel. Jurnal Evaluasi Pendidikan, 2(1), 101–114. https://doi.org/10.21009/JEP

Rizopoulos, D. (2006). ltm : An R package for latent variable modeling. Journal of Statistical Software, 17(5). https://doi.org/10.18637/jss.v017.i05

Setiawan, R. (2019). A comparison of score equating conducted using Haebara and Stocking Lord method for polytomous. European Journal of Educational Research, 8(4), 1071–1079. https://doi.org/10.12973/eu-jer.8.4.1071

Shores, M. L., & Shannon, D. M. (2007). The effects of self-regulation, motivation, anxiety, and attributions on mathematics achievement for fifth and sixth grade students. School Science and Mathematics, 107(6), 225–236. https://doi.org/10.1111/j.1949-8594.2007.tb18284.x

Sukirno, S. (2007). Penyetaraan tes UAN: Mengapa dan bagaimana? Cakrawala Pendidikan, 26(3), 305–321. https://doi.org/10.21831/cp.v3i3.8576

Uysal, İ., & Kilmen, S. (2016). Comparison of item response theory test equating methods for mixed format tests. International Online Journal of Educational Sciences, 8(2), 1–11. https://doi.org/10.15345/iojes.2016.02.001

Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3), 2175–2194. https://doi.org/10.1007/s10639-019-09870-x




DOI: https://doi.org/10.21831/jrpm.v7i1.31221

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Riset Pendidikan Matematika

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Riset Pendidikan Matematika indexed by:


Creative Commons License
Jurnal Riset Pendidikan Matematika by http://journal.uny.ac.id/index.php/jrpm/index is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

All rights reserved. p-ISSN 2356-2684 | e-ISSN 2477-1503

View My Stats