Analisis Sentimen terhadap Kalimat Finansial pada FiQA dan The Financial PhraseBank

Maximilianus Noel Brilianto, Program Studi Statistika, Universitas Sebelas Maret, Surakarta, Indonesia
Yuliana Susanti, Program Studi Statistika, Universitas Sebelas Maret, Surakarta, Indonesia
Etik Zukhronah, Program Studi Statistika, Universitas Sebelas Maret, Surakarta, Indonesia

Abstract


Analisis sentimen atau bisa disebut juga opinion mining merupakan salah satu tugas utama dari Natural Language Processing (NLP) yang merupakan studi komputasi yang mempelajari tentang pendapat seseorang terhadap suatu topik bahasan atau entitas. Analisis dilakukan dengan algoritma machine learning (pembelajaran mesin) Naïve Bayes, Decision Tree, dan K-Nearest Neighbor dengan membagi sentimen ke dalam dua kategori sentimen yaitu sentimen positif dan sentimen negatif. Data analisis diambil dari Financial Opinion Mining and Question Answering (FiQA) dan The Financial PhraseBank yang terdiri dari 4.840 kalimat yang dipilih dari berbagai berita keuangan dan dianotasi oleh 16 annotator berbeda yang berpengalaman dalam domain finansial. Penelitian ini ditujukan untuk mendapatkan hasil analisis sentimen dengan algoritma terbaik melalui perbandingan performa algoritma machine learning Naïve Bayes, Decision Tree, dan K-Nearest Neighbor terhadap kalimat finansial yang disajikan oleh FiQA dan The Financial PhraseBank. Berdasarkan analisis, didapatkan hasil performa dari masing-masing algoritma dengan nilai akurasi algoritma Naïve Bayes sebesar 78,45%; algoritma Decision Tree dengan nilai akurasi sebesar 77,72%; algoritma K-Nearest Neighbor (k=3) dengan nilai akurasi sebesar 41,25%; dan K-Nearest Neighbor (k=5) dengan nilai akurasi sebesar 37,38%. Analisis sentimen dengan algoritma Naive Bayes memiliki performa paling baik dengan nilai akurasi paling tinggi.

 

Sentiment analysis or can also be called opinion mining is one of the main tasks of Natural Language Processing (NLP) which is a computational study that studies a person's opinion on a topic or entity. The analysis was performed with machine learning algorithms Naïve Bayes, Decision Tree, and K-Nearest Neighbor by dividing sentiment into two categories of sentiment namely positive sentiment and negative sentiment. The analysis data was taken from Financial Opinion Mining and Question Answering (FiQA) and The Financial PhraseBank which consisted of 4,840 sentences selected from various financial news and annotated by 16 different annotators experienced in the financial domain. This research is aimed at obtaining sentiment analysis results with the best algorithms through comparison of the performance of Naïve Bayes, Decision Tree, and K-Nearest Neighbor machine learning algorithms against financial sentences presented by FiQA and The Financial PhraseBank. Based on the analysis, the performance results of each algorithm were obtained with the accuracy value of the Naïve Bayes algorithm of 78,45%; Decision Tree algorithm with an accuracy value of 77,72%; K-Nearest Neighbor algorithm (k=3) with an accuracy value of 41,25%; and K-Nearest Neighbor (k=5) with an accuracy value of 37,38%. Sentiment analysis with the Naive Bayes algorithm (K=5) performs best with the highest accuracy values.


Keywords


Analisis sentiment; algoritma naïve bayes; algoritma decision tree; algortima K-Nearest Neighbor

Full Text:

PDF

References


Ahmad, M., Aftab, S., Muhammad, S. S., & Ahmad, S. (2017). Machine learning techniques for sentiment analysis: A review. International Journal Of Multidisciplinary Sciences And Engineering, 8(3), 27-32. https://api.semanticscholar.org/CorpusID:244951876

Anam, M. K., Pikir, B. N., Firdaus, M. B., Erlinda, S., & Agustin, A. (2021). Penerapan na ̈ıve bayes classifier, k-nearest neighbor (knn) dan decision tree untuk menganalisis sentimen pada interaksi netizen dan pemeritah. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 21(1), 139-150. https://doi.org/10.30812/matrik.v21i1.1092

Baihaqy, A., Sfenrianto, S., Nainggolan, K., & Kaburuan, E. R. (2018). Sentiment analysis about e-commerce from tweets using decision tree, k-nearest neighbor, and naïve bayes. 2018 International Conference on Orange Technologies (ICOT), 2018, 1-6, https://doi.org/10.1109/ICOT.2018.8705796

El Naqa, I. & Murphy, M. J. (2015). What is machine learning?. In machine learning in radiation oncology, 3-11. Springer, Cham. http://dx.doi.org/10.1007/978-3-319-18305-3_1

Institute, M. (2018). Pengenalan Terhadap Machine Learning. https://medium.com

Jadhav, S. D. C. (2016). Comparative Study of K-NN. Naive bayes and decision tree classification techniques. International Journal, 5(1), 1842-1845. https://doi.org/10.21275/v5i1.nov153131

Maia, M., Handschuh, S., Freitas, A., Davis, B., McDermott, R., Zarrouk, M., & Balahur, A. (2018). Www'18 open challenge: financial opinion mining and question answering. In Companion proceedings of the the web conference 2018 , 1941-1942. http://dx.doi.org/10.1145/3184558.3192301

Malo, P., Sinha, A., Takala, P., Ahlgren, O., & Lappalainen, I. (2013, December). Learning the roles of directional expressions and domain concepts in financial news analysis. In 2013 IEEE 13th international conference on data mining workshops, 945-954. IEEE. http://dx.doi.org/10.1109/ICDMW.2013.36

Mejova, Y. (2009). Sentiment analysis: An overview. University of Lowa, Computer Science Department. http://www.ijreat.org/Papers%202013/Issue4/IJREATV1I4016.pdf

Muhammad, A. N., Bukhori, S., & Pandunata, P. (2019). Sentimen analysis of positive and negative of youtube comments using naive bayes--support vector machine (NBSVM) classifier. International Conference on Computer Science, Information Technology, and Electrical Engineering (ICQMITEE), 199-205. https://doi.org/10.1109/ICOMITEE.2019.8920923

Myers, V., & Fawcett, J. (2010). A template matching procedure for automatic target recognition in synthetic aperture sonar imagery. IEEE Signal Processing Letters, 17(7), 683-686. http://dx.doi.org/10.1109/LSP.2010.2051574

Pang, B. & Lee, L. (2008). Opinion mining and sentimen analysis. Foundation and Trends in Information Retrieval. 2(1-2), 1–135. Northern: Northern Illinois University Center for Southeast Asian Studies. https://doi.org/10.1561/1500000011

Puspita, R., & Widodo, A. (2021). Perbandingan metode knn, decision tree, dan naïve bayes terhadap analisis sentimen pengguna layanan BPJS. J. Inform. Univ. Pamulang, 5(4), 646. https://dx.doi.org/10.32493/informatika.v5i4.7622

Putra, A. D. A., & Juanita, S. (2021). Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 8(2), 636-646. https://doi.org/10.35957/jatisi.v8i2.962

Singh, P. K., & Husain, M. S. (2014). Methodologicalstudy ofopinionmining and sentiment analysis techniques. International Journal on Soft Computing (IJSC), 5(1), 11-21. https://doi.org/10.5121/ijsc.2014.5102

Wiebe, M., Hassan, A., & Korashy, H. (2014). Sentimen analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093-1113. http://dx.doi.org/10.1016/j.asej.2014.04.011




DOI: https://doi.org/10.21831/pythagoras.v18i1.59760

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats