Drought-prone areas mapping using fuzzy c-means method in Gunungkidul district

Kismiantini Kismiantini, Statistics Study Program, Universitas Negeri Yogyakarta, Indonesia
Fajra Husniyah, Mathematics Study Program, Universitas Negeri Yogyakarta, Indonesia
Osval Antonio Montesinos-López, Facultad de Telemática, Universidad de Colima, Mexico

Abstract


Gunungkidul district is one of the districts in the Special Region of Yogyakarta that is frequently affected by drought disasters. The purpose of this study is to map drought-prone areas in Gunungkidul district using the fuzzy c-means method, making it easier for the government to allocate water-dropping assistance to drought-affected areas. The research variables include rainfall, soil type, infiltration, slope, and land use. The type of variables is an ordinal scale, so they must be transformed using the successive interval method before being analyzed using the fuzzy c-means method. The cluster validity indexes of the Xie and Beni index, partition coefficient, and modification partition coefficient were used to find the optimal k. The results of fuzzy c-means clustering revealed three clusters with a low level of vulnerability consisting of 7 sub-districts, a moderate level of vulnerability consisting of 8 sub-districts, and a high level of vulnerability consisting of 3 sub-districts. Rainfall, land use, soil type, infiltration, and slope were the drought hazard factors with the greatest to least effect in this study.

Keywords


Gunungkidul district; drought; fuzzy c-means; mapping

Full Text:

PDF

References


Al-Bakri, J. T., Jameel, M., Naimat, A., Al-Karablieh, E., Al-Bakri Journal, J. T., Al-Bakri, J. T., Alnaimat, M. J., & Qaryouti, E. A. (2019). Assessment of combined drought index and mapping of drought vulnerability in Jordan. 9(3), 59–68. http://www.ijera.com/papers/vol9no3/Series-1/G0903015968.pdf

Alam, M. S., & Paul, S. (2020). A comparative analysis of clustering algorithms to identify the homogeneous rainfall gauge stations of Bangladesh. Journal of Applied Statistics, 47(8), 1460–1481. https://doi.org/10.1080/02664763.2019.1675606

Apriani, F., Setianingsih, Y. D., Arum, U. M. P., Susanti, K. A., Wicaksono, S. I., & Faruk, A. (2014). Analisis curah hujan sebagai upaya meminimalisasi dampak kekeringan di kabupaten Gunung Kidul tahun 2014. Khazanah, 6(2), 13–22. https://doi.org/10.20885/khazanah.vol6.iss2.art2

Avia, L. Q., & Sofiati, I. (2018). Analysis of El Niño and IOD phenomenon 2015/2016 and their impact on rainfall variability in Indonesia. IOP Conference Series: Earth and Environmental Science, 166(1). https://doi.org/10.1088/1755-1315/166/1/012034

Banjarnahor, N., Hindarto, K. S., & Fahrurrozi, F. (2018). Hubungan kelerengan dengan kadar air tanah, Ph tanah, dan penampilan jeruk gerga di kabupaten Lebong. Jurnal Ilmu-Ilmu Pertanian Indonesia, 20(1), 13–18. https://doi.org/10.31186/jipi.20.1.13-18

Baudoin, M. A., Vogel, C., Nortje, K., & Naik, M. (2017). Living with drought in South Africa: lessons learnt from the recent El Niño drought period. International Journal of Disaster Risk Reduction, 23, 128–137. https://doi.org/10.1016/J.IJDRR.2017.05.005

Bezdek, J. C. (1973). Cluster validity with fuzzy sets. Journal of Cybernetics, 3(3), 58–73. https://doi.org/10.1080/01969727308546047

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Pattern Recognition with Fuzzy Objective Function Algorithms. https://doi.org/10.1007/978-1-4757-0450-1 BPBDDIY. (2019). Data dropping air di Daerah Istimewa Yogyakarta. BPS Gunungkidul. (2016). Data kemiringan lereng.

Cebeci, Z., Yildiz, F., Kavlak, A. T., Cebeci, C., & Onder, H. (2020). Package “ppclust”: Probabilistic and possibilistic cluster analysis. CRAN. https://cran.r-project.org/web//packages/ppclust/ppclust.pdf

Chang, C., Andreanus, J., Chan, W., & Verdian, I. (2019). Aplikasi sistem informasi geografis berbasis web pemetaan lokasi tempat makan vegetarian di kota Batam. Jurnal Telematika, 13(1), 55–60. https://journal.ithb.ac.id/telematika/article/view/215/pdf

Chiew, F. H. S., Piechota, T. C., Dracup, J. A., & McMahon, T. A. (1998). El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. Journal of Hydrology, 204(1–4), 138–149. https://doi.org/10.1016/S0022-1694(97)00121-2

Costa, M. da S., Oliveira-Júnior, J. F. de, Santos, P. J. dos, Correia Filho, W. L. F., Gois, G. de, Blanco, C. J. C., Teodoro, P. E., Silva Junior, C. A. da, Santiago, D. de B., Souza, E. de O., & Jardim, A. M. da R. F. (2021). Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. International Journal of Climatology, 41(S1), E2111–E2135. https://doi.org/10.1002/JOC.6835

Darojati, N. W., Barus, B., & Sunarti, E. (2015). Pemantauan bahaya kekeringan di kabupaten Indramayu. Jurnal Ilmu Tanah Dan Lingkungan, 17(2), 60–68. https://doi.org/10.29244/jitl.17.2.60-68

Dave, R. N. (1996). Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters, 17(6), 613–623. https://doi.org/10.1016/0167-8655(96)00026-8

Dinas Sosial DIY. (2019). Data dropping air di Kabupaten Gunung Kidul.

DPTRDIY. (2016). Data shp curah hujan, jenis tanah, infiltrasi, dan penggunaan lahan.

Ewbank, R., Perez, C., Cornish, H., Worku, M., & Woldetsadik, S. (2019). Building resilience to El Niño-related drought: experiences in early warning and early action from Nicaragua and Ethiopia. Disasters, 43(S3), S345– S367. https://doi.org/10.1111/DISA.12340

Fahmi, H. H. (2016). Analisis kondisi resapan air dengan menggunakan sistem informasi geografis di kabupaten Gunungkidul. Universitas Muhammadiyah Surakarta.

Febtriko, A. (2017). Pemakaian mobile robot dalam meningkatkan perkembangan kognitif anak usia dini di taman kanak-kanak. RABIT : Jurnal Teknologi Dan Sistem Informasi Univrab, 2(2), 125–135. https://doi.org/https://doi.org/10.36341/rabit.v2i2.215

Feng, P., Wang, B., Liu, D. L., & Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agricultural Systems,

(December 2018), 303–316. https://doi.org/10.1016/j.agsy.2019.03.015

Ferraro, M. B., Giordani, P., & Serafini, A. (2019). fclust: An R Package for Fuzzy Clustering. The R Journal, 11(01), 1–18. https://journal.r-project.org/archive/2019/RJ-2019-017/RJ-2019-017.pdf Gader, K., Gara, A., Vanclooster, M., Khlifi, S., & Slimani, M. (2020). Drought assessment in a south Mediterranean transboundary catchment. Hydrological Sciences Journal, 65(8), 1300–1315. https://doi.org/10.1080/02626667.2020.1747621

Govender, P., & Sivakumar, V. (2020). Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research, 11(1), 40–56. https://doi.org/10.1016/j.apr.2019.09.009

Habibie, M. I., Noguchi, R., Matsushita, S., & Ahamed, T. (2020). Development of micro-level classifiers from land suitability analysis for drought-prone areas in Indonesia. Remote Sensing Applications: Society and Environment, 20(September), 1–14. https://doi.org/10.1016/j.rsase.2020.100421

Halwatura, D., McIntyre, N., Lechner, A. M., & Arnold, S. (2017). Capability of meteorological drought indices for detecting soil moisture droughts. Journal of Hydrology: Regional Studies, 12, 396–412. https://doi.org/10.1016/J.EJRH.2017.06.0012

Herawaty, N. (2014). Faktor-faktor yang mempengaruhi akuntabilitas kinerja instansi pemerintah daerah kota Jambi. Jurnal Cakrawala Akuntansi, 6(2), 151–161.

Hidayati, I. N., & Suryanto, S. (2015). Pengaruh perubahan iklim terhadap produksi pertanian dan strategi adaptasi pada lahan rawan kekeringan. Jurnal Ekonomi & Studi Pembangunan., 16(1), 42–52. https://journal.umy.ac.id/index.php/esp/article/view/1217

Ika. (2016). Water project, solusi kekeringan di Gunungkidul. Universitas Gadjah Mada. https://ugm.ac.id/id/berita/12395-water-project-solusi-kekeringan-di-gunungkidul

Kassambara, A., & Mundt, F. (2020). Package “factoextra”: Extract and visualize the results of multivariate data analyses. CRAN. https://github.com/kassambara/factoextra/issues

Khasanah, I. U., & Sastra, A. R. (2017). Pengaruh fenomena El-Nino dan La-Nina terhadap perairan Sumatera Barat. Seminar Nasional Penginderaan Jauh Ke-4, 499–510.

http://sinasinderaja.lapan.go.id/files/sinasja2017/prosiding/59_PENGARUH FENOMENA EL-NINO DAN LANINA TERHADAP PERAIRAN SUMATERA BARAT.pdf

Kurniawan, D. (2016). Kekeringan gunungkidul: lima kecamatan gunungkidul dilanda krisis air. Solopos.Com.https://www.solopos.com/kekeringan-gunungkidul-lima-kecamatan-gunungkidul-dilanda-krisis-air-753608 Kusumadewi, S., & Purnomo, H. (2010). Aplikasi logika fuzzy untuk pendukung keputusan. Graha Ilmu.

Leitold, V., Morton, D. C., Longo, M., Nara Dos-Santos, M., Keller, M., & Scaranello, M. (2018). El Niño drought increased canopy turnover in Amazon forests. New Phytologist, 219(3), 959–971. https://doi.org/10.1111/nph.15110

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2021). cluster: Cluster analysis basics and extensions. R Package Version 2.1.2. https://cran.r-project.org/package=cluster Maranell, G. (2017). Scaling: A sourcebook for behavioral scientists. Routledge.

Mardiana, S., Widhiastuti, R., & Erningpraja, L. (2020). Management and employees perception analysis on sugar industry waste management based on cleaner production. Britain International of Exact Sciences Journal, 2(1), 442–449. https://doi.org/https://doi.org/10.33258/bioex.v2i1.201

Moghbeli, A., Delbari, M., & Amiri, M. (2020). Application of a standardized precipitation index for mapping drought severity in an arid climate region, southeastern Iran. Arabian Journal of Geosciences, 13(5), 1–16. https://doi.org/10.1007/S12517-020-5201-7

Moradi, A. M., & Dariane, A. B. (2015). Evolving neural networks and fuzzy clustering for multireservoir operations. Neural Computing and Applications, 28(5), 1149–1162. https://doi.org/10.1007/S00521-015-2130-6

Muharsyah, R., & Ratri, D. N. (2015). Durasi dan kekuatan kekeringan menggunakan indeks hujan terstandarisasi di pulau Bali. Jurnal Meteorologi dan Geofisika, 16(2), 93–104. https://doi.org/10.31172/jmg.v16i2.272

Nabilah, F., Prasetyo, Y., & Sukmono, A. (2017). Analisis pengaruh fenomena El Nino dan La Nina terhadap curah hujan tahun 1998 - 2016 menggunakan indikator Oni (Oceanic Nino Index) (Studi kasus : Provinsi Jawa Barat). Jurnal Geodesi Undip, 6(4), 402–412. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/18170

Ningsih, S., & Dukalang, H. H. (2019). Penerapan metode suksesif interval pada analisis regresi linier berganda. Jambura Journal of Mathematics, 1(1), 43–53. https://doi.org/10.34312/jjom.v1i1.1742

Nishom, M. (2019). Perbandingan akurasi Euclidean distance, Minkowski distance, dan Manhattan distance pada algoritma K-means clustering berbasis chi-square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253

Nugroho, J., Zid, M., & Miarsyah, M. (2020). Potensi sumber air dan kearifan masyarakat dalam menghadapi risiko kekeringan di wilayah karst (Kabupaten Gunung Kidul, Provinsi Yogyakarta). Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 4(1), 438–447. https://doi.org/10.36813/jplb.4.1.438-447

Omran, M. G. H., Engelbrecht, A. P., & Salman, A. (2007). An overview of clustering methods. Intelligent Data Analysis, 11(6), 583–605. https://doi.org/10.3233/ida-2007-11602

Paparrizos, S., Maris, F., Weiler, M., & Matzarakis, A. (2018). Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions. Theoretical and Applied Climatology, 131(1–2), 259–270. https://doi.org/10.1007/s00704-016-1964-x

Pawitan, H. (2014). Land use changes and their impacts on watershed hydrology https://www.researchgate.net/publication/237486643_PERUBAHAN_PENGGUNAAN_LAHAN_DAN_PENGARUHNYA_TERHADAP_HIDROLOGI_DAERAH_ALIRAN_SUNGAI_Land_Use_Changes_and_Their_Impacts_on_Watershed_Hydrology/link/0a85e53b54d92e7a0c000000/download

Pertiwi, A. P., & Kurniawan, R. (2017). Analisis pemetaan risiko bencana banjir di Indonesia tahun 2011 – 2015 menggunakan fuzzy c-means. SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017, 97–104. https://doi.org/10.31227/OSF.IO/5KDVU

Pimentel, B. A., & de Souza, R. M. C. R. (2016). Multivariate Fuzzy C-Means algorithms with weighting. Neurocomputing, 174, 946–965. https://doi.org/10.1016/j.neucom.2015.10.011

Rahakbauw, D. L., Ilwaru, V. Y. I., & Hahury, M. H. (2017). Implementasi fuzzy C-means clustering dalam penentuan beasiswa. Barekeng: Jurnal Ilmu Matematika dan Terapan, 11(1), 1–11.https://www.neliti.com/id/publications/277582/implementasi-fuzzy-c-means-clustering-dalam-penentuanbeasiswa

Ramadhan, E. R., Sutoyo, E., Musnansyah, A., & Belgaman, H. A. (2020). Analysis of hotspot data for drought clustering using K-means algorithm. ICONETSI: Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry, 1–6. https://doi.org/10.1145/3429789.3429824

Raykov, Y. P., Boukouvalas, A., Baig, F., & Little, M. A. (2016). What to do when K-means clustering fails: A simple yet principled alternative algorithm. PLoS ONE, 11(9), 1–28. https://doi.org/10.1371/journal.pone.0162259

Revelle, W. (2021). psych: Procedures for psychological, psychometric, and personality research. In R package version 2.1.9. https://cran.r-project.org/package=psych

Rizal, A. S., & Hakim, R. B. F. (2015). Metode k-means cluster dan fuzzy c-means cluster: Studi kasus indeks pembangunan manusia di kawasan Indonesia timur tahun 2012. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS, 643–657. https://publikasiilmiah.ums.ac.id/handle/11617/5803

Sharma, M., & Kamal Borana, M. (2014). Clustering in data mining : A brief review. International Journal Of Core Engineering & Management (IJCEM), 1(5), 117–126.

Sigit, A. (2016a). Dinsos Gunungkidul mulai droping air. Krjogja.Com. https://www.krjogja.com/beritalokal/diy/gunungkidul/dinsos-gunungkidul-mulai-droping-air/

Sigit, A. A. (2016b). Analisis spasial kemampuan infiltrasi sebagai bagian dari indikasi bencana kekeringan hidrologis di DAS Wedi, kabupaten Klaten-Boyolali. Prosiding Seminar Nasional Geografi UMS, 102–111. https://publikasiilmiah.ums.ac.id/handle/11617/8224

Simhachalam, B., & Ganesan, G. (2015). Fuzzy clustering algorithms in medical diagnostics. Wulfenia, 22(7), 308– 317. https://www.researchgate.net/publication/279806430_Fuzzy_Clustering_Algorithms_in_Medical_Diag nostics

Sofiani, D., Maulida, A. S., Fadhillah, N., & Sihite, D. Y. (2017). Gender differences in students’ attitude towards science. IOP Conf. Series: Journal of Physics: Conf. Series, 895, 12168. https://doi.org/10.1088/17426596/895/1/012168

Surmaini, E. (2016). Pemantauan dan peringatan dini kekeringan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 10(1), 37–50. http://ejurnal.litbang.pertanian.go.id/index.php/jsl/article/view/6320

Wickham, H., François, R., Henry, L., & Müller, K. (2021). “dplyr”: A grammar of data manipulation. CRAN. https://cran.r-project.org/web/packages/dplyr/index.html

Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841–847. https://ieeexplore.ieee.org/document/85677

Xulu, S., Peerbhay, K., Gebreslasie, M., & Ismail, R. (2019). Unsupervised clustering of forest response to drought dtress in Zululand region, South Africa. Forests, 10(531), 1–15. https://doi.org/10.3390/f10070531

Yang, M. S., & Nataliani, Y. (2017). Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters. Pattern Recognition, 71, 45–59. https://doi.org/10.1016/J.PATCOG.2017.05.017




DOI: https://doi.org/10.21831/pythagoras.v16i2.43780

Refbacks

  • There are currently no refbacks.


PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:


Creative Commons License Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.

All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X

Visitor Number:

View Pythagoras Stats