Drought-prone areas mapping using fuzzy c-means method in Gunungkidul district
Fajra Husniyah, Mathematics Study Program, Universitas Negeri Yogyakarta, Indonesia
Osval Antonio Montesinos-López, Facultad de Telemática, Universidad de Colima, Mexico
Abstract
Keywords
Full Text:
PDFReferences
Al-Bakri, J. T., Jameel, M., Naimat, A., Al-Karablieh, E., Al-Bakri Journal, J. T., Al-Bakri, J. T., Alnaimat, M. J., & Qaryouti, E. A. (2019). Assessment of combined drought index and mapping of drought vulnerability in Jordan. 9(3), 59–68. http://www.ijera.com/papers/vol9no3/Series-1/G0903015968.pdf
Alam, M. S., & Paul, S. (2020). A comparative analysis of clustering algorithms to identify the homogeneous rainfall gauge stations of Bangladesh. Journal of Applied Statistics, 47(8), 1460–1481. https://doi.org/10.1080/02664763.2019.1675606
Apriani, F., Setianingsih, Y. D., Arum, U. M. P., Susanti, K. A., Wicaksono, S. I., & Faruk, A. (2014). Analisis curah hujan sebagai upaya meminimalisasi dampak kekeringan di kabupaten Gunung Kidul tahun 2014. Khazanah, 6(2), 13–22. https://doi.org/10.20885/khazanah.vol6.iss2.art2
Avia, L. Q., & Sofiati, I. (2018). Analysis of El Niño and IOD phenomenon 2015/2016 and their impact on rainfall variability in Indonesia. IOP Conference Series: Earth and Environmental Science, 166(1). https://doi.org/10.1088/1755-1315/166/1/012034
Banjarnahor, N., Hindarto, K. S., & Fahrurrozi, F. (2018). Hubungan kelerengan dengan kadar air tanah, Ph tanah, dan penampilan jeruk gerga di kabupaten Lebong. Jurnal Ilmu-Ilmu Pertanian Indonesia, 20(1), 13–18. https://doi.org/10.31186/jipi.20.1.13-18
Baudoin, M. A., Vogel, C., Nortje, K., & Naik, M. (2017). Living with drought in South Africa: lessons learnt from the recent El Niño drought period. International Journal of Disaster Risk Reduction, 23, 128–137. https://doi.org/10.1016/J.IJDRR.2017.05.005
Bezdek, J. C. (1973). Cluster validity with fuzzy sets. Journal of Cybernetics, 3(3), 58–73. https://doi.org/10.1080/01969727308546047
Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Pattern Recognition with Fuzzy Objective Function Algorithms. https://doi.org/10.1007/978-1-4757-0450-1 BPBDDIY. (2019). Data dropping air di Daerah Istimewa Yogyakarta. BPS Gunungkidul. (2016). Data kemiringan lereng.
Cebeci, Z., Yildiz, F., Kavlak, A. T., Cebeci, C., & Onder, H. (2020). Package “ppclust”: Probabilistic and possibilistic cluster analysis. CRAN. https://cran.r-project.org/web//packages/ppclust/ppclust.pdf
Chang, C., Andreanus, J., Chan, W., & Verdian, I. (2019). Aplikasi sistem informasi geografis berbasis web pemetaan lokasi tempat makan vegetarian di kota Batam. Jurnal Telematika, 13(1), 55–60. https://journal.ithb.ac.id/telematika/article/view/215/pdf
Chiew, F. H. S., Piechota, T. C., Dracup, J. A., & McMahon, T. A. (1998). El Nino/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting. Journal of Hydrology, 204(1–4), 138–149. https://doi.org/10.1016/S0022-1694(97)00121-2
Costa, M. da S., Oliveira-Júnior, J. F. de, Santos, P. J. dos, Correia Filho, W. L. F., Gois, G. de, Blanco, C. J. C., Teodoro, P. E., Silva Junior, C. A. da, Santiago, D. de B., Souza, E. de O., & Jardim, A. M. da R. F. (2021). Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. International Journal of Climatology, 41(S1), E2111–E2135. https://doi.org/10.1002/JOC.6835
Darojati, N. W., Barus, B., & Sunarti, E. (2015). Pemantauan bahaya kekeringan di kabupaten Indramayu. Jurnal Ilmu Tanah Dan Lingkungan, 17(2), 60–68. https://doi.org/10.29244/jitl.17.2.60-68
Dave, R. N. (1996). Validating fuzzy partitions obtained through c-shells clustering. Pattern Recognition Letters, 17(6), 613–623. https://doi.org/10.1016/0167-8655(96)00026-8
Dinas Sosial DIY. (2019). Data dropping air di Kabupaten Gunung Kidul.
DPTRDIY. (2016). Data shp curah hujan, jenis tanah, infiltrasi, dan penggunaan lahan.
Ewbank, R., Perez, C., Cornish, H., Worku, M., & Woldetsadik, S. (2019). Building resilience to El Niño-related drought: experiences in early warning and early action from Nicaragua and Ethiopia. Disasters, 43(S3), S345– S367. https://doi.org/10.1111/DISA.12340
Fahmi, H. H. (2016). Analisis kondisi resapan air dengan menggunakan sistem informasi geografis di kabupaten Gunungkidul. Universitas Muhammadiyah Surakarta.
Febtriko, A. (2017). Pemakaian mobile robot dalam meningkatkan perkembangan kognitif anak usia dini di taman kanak-kanak. RABIT : Jurnal Teknologi Dan Sistem Informasi Univrab, 2(2), 125–135. https://doi.org/https://doi.org/10.36341/rabit.v2i2.215
Feng, P., Wang, B., Liu, D. L., & Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agricultural Systems,
(December 2018), 303–316. https://doi.org/10.1016/j.agsy.2019.03.015
Ferraro, M. B., Giordani, P., & Serafini, A. (2019). fclust: An R Package for Fuzzy Clustering. The R Journal, 11(01), 1–18. https://journal.r-project.org/archive/2019/RJ-2019-017/RJ-2019-017.pdf Gader, K., Gara, A., Vanclooster, M., Khlifi, S., & Slimani, M. (2020). Drought assessment in a south Mediterranean transboundary catchment. Hydrological Sciences Journal, 65(8), 1300–1315. https://doi.org/10.1080/02626667.2020.1747621
Govender, P., & Sivakumar, V. (2020). Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmospheric Pollution Research, 11(1), 40–56. https://doi.org/10.1016/j.apr.2019.09.009
Habibie, M. I., Noguchi, R., Matsushita, S., & Ahamed, T. (2020). Development of micro-level classifiers from land suitability analysis for drought-prone areas in Indonesia. Remote Sensing Applications: Society and Environment, 20(September), 1–14. https://doi.org/10.1016/j.rsase.2020.100421
Halwatura, D., McIntyre, N., Lechner, A. M., & Arnold, S. (2017). Capability of meteorological drought indices for detecting soil moisture droughts. Journal of Hydrology: Regional Studies, 12, 396–412. https://doi.org/10.1016/J.EJRH.2017.06.0012
Herawaty, N. (2014). Faktor-faktor yang mempengaruhi akuntabilitas kinerja instansi pemerintah daerah kota Jambi. Jurnal Cakrawala Akuntansi, 6(2), 151–161.
Hidayati, I. N., & Suryanto, S. (2015). Pengaruh perubahan iklim terhadap produksi pertanian dan strategi adaptasi pada lahan rawan kekeringan. Jurnal Ekonomi & Studi Pembangunan., 16(1), 42–52. https://journal.umy.ac.id/index.php/esp/article/view/1217
Ika. (2016). Water project, solusi kekeringan di Gunungkidul. Universitas Gadjah Mada. https://ugm.ac.id/id/berita/12395-water-project-solusi-kekeringan-di-gunungkidul
Kassambara, A., & Mundt, F. (2020). Package “factoextra”: Extract and visualize the results of multivariate data analyses. CRAN. https://github.com/kassambara/factoextra/issues
Khasanah, I. U., & Sastra, A. R. (2017). Pengaruh fenomena El-Nino dan La-Nina terhadap perairan Sumatera Barat. Seminar Nasional Penginderaan Jauh Ke-4, 499–510.
http://sinasinderaja.lapan.go.id/files/sinasja2017/prosiding/59_PENGARUH FENOMENA EL-NINO DAN LANINA TERHADAP PERAIRAN SUMATERA BARAT.pdf
Kurniawan, D. (2016). Kekeringan gunungkidul: lima kecamatan gunungkidul dilanda krisis air. Solopos.Com.https://www.solopos.com/kekeringan-gunungkidul-lima-kecamatan-gunungkidul-dilanda-krisis-air-753608 Kusumadewi, S., & Purnomo, H. (2010). Aplikasi logika fuzzy untuk pendukung keputusan. Graha Ilmu.
Leitold, V., Morton, D. C., Longo, M., Nara Dos-Santos, M., Keller, M., & Scaranello, M. (2018). El Niño drought increased canopy turnover in Amazon forests. New Phytologist, 219(3), 959–971. https://doi.org/10.1111/nph.15110
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2021). cluster: Cluster analysis basics and extensions. R Package Version 2.1.2. https://cran.r-project.org/package=cluster Maranell, G. (2017). Scaling: A sourcebook for behavioral scientists. Routledge.
Mardiana, S., Widhiastuti, R., & Erningpraja, L. (2020). Management and employees perception analysis on sugar industry waste management based on cleaner production. Britain International of Exact Sciences Journal, 2(1), 442–449. https://doi.org/https://doi.org/10.33258/bioex.v2i1.201
Moghbeli, A., Delbari, M., & Amiri, M. (2020). Application of a standardized precipitation index for mapping drought severity in an arid climate region, southeastern Iran. Arabian Journal of Geosciences, 13(5), 1–16. https://doi.org/10.1007/S12517-020-5201-7
Moradi, A. M., & Dariane, A. B. (2015). Evolving neural networks and fuzzy clustering for multireservoir operations. Neural Computing and Applications, 28(5), 1149–1162. https://doi.org/10.1007/S00521-015-2130-6
Muharsyah, R., & Ratri, D. N. (2015). Durasi dan kekuatan kekeringan menggunakan indeks hujan terstandarisasi di pulau Bali. Jurnal Meteorologi dan Geofisika, 16(2), 93–104. https://doi.org/10.31172/jmg.v16i2.272
Nabilah, F., Prasetyo, Y., & Sukmono, A. (2017). Analisis pengaruh fenomena El Nino dan La Nina terhadap curah hujan tahun 1998 - 2016 menggunakan indikator Oni (Oceanic Nino Index) (Studi kasus : Provinsi Jawa Barat). Jurnal Geodesi Undip, 6(4), 402–412. https://ejournal3.undip.ac.id/index.php/geodesi/article/view/18170
Ningsih, S., & Dukalang, H. H. (2019). Penerapan metode suksesif interval pada analisis regresi linier berganda. Jambura Journal of Mathematics, 1(1), 43–53. https://doi.org/10.34312/jjom.v1i1.1742
Nishom, M. (2019). Perbandingan akurasi Euclidean distance, Minkowski distance, dan Manhattan distance pada algoritma K-means clustering berbasis chi-square. Jurnal Informatika: Jurnal Pengembangan IT, 4(1), 20–24. https://doi.org/10.30591/jpit.v4i1.1253
Nugroho, J., Zid, M., & Miarsyah, M. (2020). Potensi sumber air dan kearifan masyarakat dalam menghadapi risiko kekeringan di wilayah karst (Kabupaten Gunung Kidul, Provinsi Yogyakarta). Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 4(1), 438–447. https://doi.org/10.36813/jplb.4.1.438-447
Omran, M. G. H., Engelbrecht, A. P., & Salman, A. (2007). An overview of clustering methods. Intelligent Data Analysis, 11(6), 583–605. https://doi.org/10.3233/ida-2007-11602
Paparrizos, S., Maris, F., Weiler, M., & Matzarakis, A. (2018). Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions. Theoretical and Applied Climatology, 131(1–2), 259–270. https://doi.org/10.1007/s00704-016-1964-x
Pawitan, H. (2014). Land use changes and their impacts on watershed hydrology https://www.researchgate.net/publication/237486643_PERUBAHAN_PENGGUNAAN_LAHAN_DAN_PENGARUHNYA_TERHADAP_HIDROLOGI_DAERAH_ALIRAN_SUNGAI_Land_Use_Changes_and_Their_Impacts_on_Watershed_Hydrology/link/0a85e53b54d92e7a0c000000/download
Pertiwi, A. P., & Kurniawan, R. (2017). Analisis pemetaan risiko bencana banjir di Indonesia tahun 2011 – 2015 menggunakan fuzzy c-means. SEMINAR MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2017, 97–104. https://doi.org/10.31227/OSF.IO/5KDVU
Pimentel, B. A., & de Souza, R. M. C. R. (2016). Multivariate Fuzzy C-Means algorithms with weighting. Neurocomputing, 174, 946–965. https://doi.org/10.1016/j.neucom.2015.10.011
Rahakbauw, D. L., Ilwaru, V. Y. I., & Hahury, M. H. (2017). Implementasi fuzzy C-means clustering dalam penentuan beasiswa. Barekeng: Jurnal Ilmu Matematika dan Terapan, 11(1), 1–11.https://www.neliti.com/id/publications/277582/implementasi-fuzzy-c-means-clustering-dalam-penentuanbeasiswa
Ramadhan, E. R., Sutoyo, E., Musnansyah, A., & Belgaman, H. A. (2020). Analysis of hotspot data for drought clustering using K-means algorithm. ICONETSI: Proceedings of the International Conference on Engineering and Information Technology for Sustainable Industry, 1–6. https://doi.org/10.1145/3429789.3429824
Raykov, Y. P., Boukouvalas, A., Baig, F., & Little, M. A. (2016). What to do when K-means clustering fails: A simple yet principled alternative algorithm. PLoS ONE, 11(9), 1–28. https://doi.org/10.1371/journal.pone.0162259
Revelle, W. (2021). psych: Procedures for psychological, psychometric, and personality research. In R package version 2.1.9. https://cran.r-project.org/package=psych
Rizal, A. S., & Hakim, R. B. F. (2015). Metode k-means cluster dan fuzzy c-means cluster: Studi kasus indeks pembangunan manusia di kawasan Indonesia timur tahun 2012. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS, 643–657. https://publikasiilmiah.ums.ac.id/handle/11617/5803
Sharma, M., & Kamal Borana, M. (2014). Clustering in data mining : A brief review. International Journal Of Core Engineering & Management (IJCEM), 1(5), 117–126.
Sigit, A. (2016a). Dinsos Gunungkidul mulai droping air. Krjogja.Com. https://www.krjogja.com/beritalokal/diy/gunungkidul/dinsos-gunungkidul-mulai-droping-air/
Sigit, A. A. (2016b). Analisis spasial kemampuan infiltrasi sebagai bagian dari indikasi bencana kekeringan hidrologis di DAS Wedi, kabupaten Klaten-Boyolali. Prosiding Seminar Nasional Geografi UMS, 102–111. https://publikasiilmiah.ums.ac.id/handle/11617/8224
Simhachalam, B., & Ganesan, G. (2015). Fuzzy clustering algorithms in medical diagnostics. Wulfenia, 22(7), 308– 317. https://www.researchgate.net/publication/279806430_Fuzzy_Clustering_Algorithms_in_Medical_Diag nostics
Sofiani, D., Maulida, A. S., Fadhillah, N., & Sihite, D. Y. (2017). Gender differences in students’ attitude towards science. IOP Conf. Series: Journal of Physics: Conf. Series, 895, 12168. https://doi.org/10.1088/17426596/895/1/012168
Surmaini, E. (2016). Pemantauan dan peringatan dini kekeringan pertanian di Indonesia. Jurnal Sumberdaya Lahan, 10(1), 37–50. http://ejurnal.litbang.pertanian.go.id/index.php/jsl/article/view/6320
Wickham, H., François, R., Henry, L., & Müller, K. (2021). “dplyr”: A grammar of data manipulation. CRAN. https://cran.r-project.org/web/packages/dplyr/index.html
Xie, X. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841–847. https://ieeexplore.ieee.org/document/85677
Xulu, S., Peerbhay, K., Gebreslasie, M., & Ismail, R. (2019). Unsupervised clustering of forest response to drought dtress in Zululand region, South Africa. Forests, 10(531), 1–15. https://doi.org/10.3390/f10070531
Yang, M. S., & Nataliani, Y. (2017). Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters. Pattern Recognition, 71, 45–59. https://doi.org/10.1016/J.PATCOG.2017.05.017
DOI: https://doi.org/10.21831/pythagoras.v16i2.43780
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X