Karakteristik Panas pada Exhaust manifold dengan Variasi Putaran Mesin menggunakan Computational Fluid Dynamics

Muhkamad Wakid, Universitas Negeri Yogyakarta, Indonesia
Agus Widyianto, Universitas Negeri Yogyakarta, Indonesia
Asri Widowati, Universitas Negeri Yogyakarta, Indonesia

Abstract


Pemanfaatan teknologi dalam industri otomotif telah memberikan dampak signifikan terhadap efisiensi mesin kendaraan. Salah satu aspek kritis dalam sistem pembakaran adalah manajemen panas pada exhaust manifold. Penelitian ini bertujuan untuk mengkarakteristikkan distribusi panas, tekanan dan kecepatan aliran gas buang pada exhaust manifolddengan variasi putaran mesin menggunakan Computational Fluid Dynamics (CFD). Dalam penelitian ini menggunakan empat variasi putaran mesin yaitu 750 rpm, 1000 rpm, 1500 rpm dan 2000 rpm. Setiap variasi putaran mesin memiliki suhu serta kecepatan aliran gas buang yang berbeda pada setiap saluran masuknya. Putaran mesin 750 rpm menaikkan suhu material manifold buang hingga 235°C. Suhu permukaan material meningkat secara signifikan seiring dengan kecepatan mesin. Perbandingan antara profil suhu gas buang dan suhu permukaan bahan exhaust manifoldmengungkapkan hubungan erat antara aktivitas mesin dan suhu permukaan. Peningkatan suhu seiring dengan kenaikan putaran mesin mencerminkan intensifikasi aktivitas pembakaran, memiliki dampak langsung pada kestabilan suhu manifold. Analisis tekanan gas buang menyoroti peningkatan tekanan seiring dengan peningkatan putaran mesin. Lonjakan tekanan pada putaran mesin tinggi mengindikasikan intensifikasi dalam volume dan kecepatan aliran gas buang selama fase pembakaran. Profil kecepatan aliran gas buang menunjukkan peningkatan sejalan dengan pertambahan putaran mesin.

Keywords


Exhaust manifold, Flow speed, Nitrogen oxide, Computational Fluid Dynamics

Full Text:

PDF

References


Abdullah, N. R., Shahruddin, N. S., Mamat, A. M. I., Kasolang, S., Zulkifli, A., & Mamat, R. (2013). Effects of air intake pressure to the fuel economy and exhaust emissions on a small SI engine. Procedia Engineering, 68, 278-284.

Al-Khishali, K. J. M., Mashkour, M. A., & Omaraa, E. S. (2010). Analysis of Flow Characteristics In Inlet And Exhaust Manifolds of Experimental Gasoline Combustion In A VCR Engine. Engineering and Technology Journal, 28(7).

Alphonse, M., & Kumar, R. (2021). Investigation of heat dissipation in exhaust manifold using computational fluid dynamics. International Journal of Ambient Energy, 42(9), 999-1004.

Bajpai, K., Chandrakar, A., Agrawal, A., & Shekhar, S. (2017). CFD analysis of exhaust manifold of SI engine and comparison of back pressure using alternative fuels. IOSR J. Mech. Civ. Eng, 14(01), 23-29.

Bral, P., Tripathi, J. P., Dewangan, S., & Mahato, A. C. (2022). CFD analysis of an exhaust manifold for emission reduction. Materials Today: Proceedings, 63, 354-361.

Cerdoun, M., Farsaoui, B., Khalfallah, S., Lankri, R., & Carcasci, C. (2019). Effect of the engine speed and loading on the heat transfer within exhaust valves.

Deger, Y., Simperl, B., & Jimenez, L. P. (2004). Coupled CFD-FE-analysis for the exhaust manifold of a diesel engine.

Desai, A. R., Buradi, A., Gowthami, L., Praveena, B. A., Madhusudhan, A., & Bora, B. J. (2022). Computational Investigation of Engine Exhaust Manifold with Different Alternative Fuels By Using CFD.

Gopal, P., Kumar, T. S., & Kumaragurubaran, B. (2009). Analysis of flow through the exhaust manifold of a multi cylinder petrol engine for improved volumetric efficiency. International Journal of Dynamics of Fluids, 5(1), 15-27.

Guoquan, X., Huaming, W., Lin, C., & Xiaobin, H. (2021). Predicting unsteady heat transfer effect of vehicle thermal management system using steady velocity equivalent method. Science Progress, 104(2), 00368504211025933.

Iortyer, H. A., & Bwonsi, L. (2017). Energy and Exergy Analysis of a CI engine fuelled with biodiesel fuel from palm kernel oil and its blends with petroleum diesel. International Journal of Advanced Engineering Research and Science, 4(7), 237214.

Kumar, R. R., Razak, A., Alshahrani, S., Sharma, A., Thakur, D., Shaik, S., . . . Afzal, A. (2022). Vibration analysis of composite exhaust manifold for diesel engine using CFD. Case Studies in Thermal Engineering, 32, 101853.

Maheshappa, H., Pravin, V. K., Umesh, K. S., & Veena, P. H. (2013). Design analysis of catalytic converter to reduce particulate matter and achieve limited back pressure in diesel engine by CFD. International Journal of Engineering Research and Applications (IJERA), 3(1), 998-1004.

Manohar, D. S., & Krishnaraj, J. (2018). Modeling and analysis of exhaust manifold using CFD.

Park, C., Kim, Y., Choi, Y., Lee, J., & Lim, B. (2019). The effect of engine speed and cylinder-to-cylinder variations on backfire in a hydrogen-fueled internal combustion engine. International Journal of Hydrogen Energy, 44(39), 22223-22230.

Pathak, A., & Deshmukh, S. (2021). Thermal analysis of Exhaust manifold system using computational fluid dynamics. Spectrum of Emerging Sciences, 1(1), 50-55.

Sadhasivam, C., Murugan, S., Vairamuthu, J., & Priyadharshini, S. M. (2021). Design and analysis of two-cylinder exhaust manifold with improved performance in CFD. Materials Today: Proceedings, 37, 2141-2144.

Seenikannan, P., Periyasamy, V. M., & Nagaraj, P. (2008). An experimental analysis of a Y section exhaust manifold system with improved engine performance. International Journal of Product Development, 6(1), 50-56.

Sulistyo, B., Sofyan, H., Sukardi, T., & Widyianto, A. (2023). Performance and Emission Characteristics Using Dual Injection System of Gasoline and Ethanol. Automotive Experiences, 6(2), 245-258.

Taibani, A. Z., & Kalamkar, V. (2012). Experimental and computational analysis of behavior of three-way catalytic converter under axial and radial flow conditions. International Journal of Fluid Machinery and Systems, 5(3), 134-142.

Teja, M. A., Ayyappa, K., Katam, S., & Anusha, P. (2016). Analysis of exhaust manifold using computational fluid dynamics. Fluid Mech Open Acc, 3(1), 1000129.

Umesh, K. S., & Rajagopal, V. P. K. (2013). Cfd Analysis Of Exhaust Manifold Of Multi-Cylinder Si Engine Todetermine Optimal Geometry For Reducing Emissions. International Journal of Automobile Engineering Research and Development, 45-56.

Wang, D., Zhang, W., Liu, D., Chen, X., Tang, G., Okosun, T., . . . Zhou, C. Q. (2015). CFD Simulation of a 6-Cylinder Diesel Engine Intake and Exhaust Manifold.




DOI: https://doi.org/10.21831/jpvo.v6i2.70755

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Pendidikan Vokasi Otomotif

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

Indexed by

 

Supported by:



RJI Main logo

Akreditasi Jurnal

 

 

 

Creative Commons License

Jurnal Pendidikan Vokasi Otomotif is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uny.ac.id/index.php/jpvo.

JPVO Stats