Kajian dan prediksi perubahan Tutupan Lahan menggunakan Cellular Automata-Markov Chain di Kota Unaaha

Septianto Aldiansyah, Departemen Geografi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia, Depok, Indonesia, Indonesia
Supriatna Supriatna, Departemen Geografi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia, Depok, Indonesia, Indonesia

Abstract


Kota Unaaha memiliki letak yang strategis karena berada di jalan lintas provinsi, pusat kegiatan ekonomi, hingga industri. Pertumbuhan ekonomi cukup pesat dibanding wilayah lain di Kabupaten Konawe sehingga dapat menyebabkan konversi lahan dimasa depan. Penelitian ini bertujuan untuk menganalisis perubahan tutupan lahan di Kota Unaaha dari tahun 2006-2021 dan memprediksi tutupan lahan pada tahun 2036. Metode yang diterapkan pada penelitian ini adalah Cellular Automata Markov Chain untuk memprediksi perubahan tutupan lahan tahun 2036. Hasil penelitian menunjukkan bahwa jenis tutupan lahan permukiman dan daerah pertanian terus meningkat, sedangkan perairan, lahan terbuka dan daerah bervegetasi mengalami penurunan. Pada tahun 2036, kawasan permukiman dan pertanian akan bertambah masing-masing hingga seluas 1.279,42 ha dan 1074,14. Perubahan ini sejalan dengan rencana tata ruang Kota Unaaha sebagai Kota Agropolitan khususnya pada tutupan lahan daerah pertanian, namun cenderung menyimpang pada kawasan permukiman. Perencanaan tata ruang perlu untuk ditindaklanjuti untuk agar kota dapat lebih berkelanjutan di masa depan.

Full Text:

PDF Untitled

References


Aldiansyah, S., Mandini Mannesa, M., & Supriatna, S. (2021). Monitoring of Vegetation Cover Changes With Geomorphological Forms using Google Earth Engine in Kendari City. Jurnal Geografi Gea, 21(2), 159-170. doi:https://doi.org/10.17509/gea.v21i2.37070

Aldiansyah, S., & Adi Wibowo. (2022). Aplikasi Metode Spatial Multi Criteria Analysis untuk Pengembangan Kawasan Permukiman (Studi Kasus: Re-Evaluasi RTRW Provinsi Sulawesi Tenggara). Jurnal Geografi, Edukasi Dan Lingkungan (JGEL), 6(2), 136-152. https://doi.org/10.22236/jgel.v6i2.7481

Aldiansyah, S., & Saputra, R. A. (2022). Comparison of Machine Learning Algorithms for Land Use and Land Cover Analysis Using Google Earth Engine (Case Study: Wanggu Watershed). International Journal of Remote Sensing and Earth Sciences (IJReSES), 19(2), 197-210. http://dx.doi.org/10.30536/j.ijreses.2022.v19.a3803

Badan Pusat Statistik. (2021). Kecamatan Unaaha dalam Angka. Retrivied from https://konawekab.bps.go.id

Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A., &

Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), 1-14. DOI: https://doi.org/10.1007/s13201-021-01545-8

Costa, M. C., & Da, Y. (2015). Studi Pengaruh Perubahan Penggunaan Lahan Untuk Prediksi Perubahan Suhu Lingkungan Dengan Memanfaatkan Sig (Studi Kasus: Kota Malang, Jawa Timur) (Doctoral dissertation, ITN MALANG).

Dadras, M., Shafri, H.Z.M., Ahmad, N., Pradhan, B., & Safarpour, S. (2015). Spatio-temporal analysis of urban growth from remote sensing data in Bandar Abbas City, Iran, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 35-52. https://doi.org/10.1016/j.ejrs.2015.03.005.

Fatmawati, F. (2016). Analisis Sedimentasi Aliran Sungai Batang Sinamar Bagian Tengah Di Kenagarian Koto Tuo Kecamatan Harau Kabupaten Lima Puluh Kota. Jurnal Geografi, 8(2), 156-164. DOI: https://doi.org/10.24114/jg.v8i2.5845

Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., ... & Hazra, S. (2017). Application of Cellular automata and Markov-chain model in geospatial environmental modeling-A review. Remote Sensing Applications: Society and Environment, 5, 64-77. https://doi.org/10.1016/j.rsase.2017.01.005

Igun, E., & Williams M. (2018). Impact of urban land cover change on land surface temperature. Global J. Environ. Sci. Manage, 4(1),47–58. https://doi.org/10.22034/GJESM .2018.04.01.005.

Khandelwal, S., Goyal, R., Kaul, N., & Mathew, A. (2018). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egyptian Journal of Remote Sensing and Space Science, 21(1),87–94. https://doi.org/10.1016/j.ejrs.2017.01.005.

Kim, I., Arnhold, S., Ahn, S., Le, Q. B., Kim, S. J., Park, S. J., & Koellner, T. (2019). Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environmental Modelling & Software, 122, 103982. https://doi.org/10.1016/j.envsoft.2017.06.018

Marwah, S. (2014). Analisis Perubahan Penggunaan Lahan dan Ketersediaan Sumberdaya Air di DAS Konaweha Propinsi Sulawesi Tenggara. Jurnal Agroteknos, 4(3), 244543.

Mustafa, A., Ebaid, A., Omrani, H., & McPhearson, T. (2021). A multi-objective Markov Chain Monte Carlo cellular automata model: Simulating multi-density urban expansion in NYC. Computers, Environment and Urban Systems, 87, 101602., doi:10.1016/j.compenvurbsys.2021.101602.

Mwabumba, M., Yadav, B.K., Rwiza, M.J., Larbi, I. and Twisa, S. (2022). Analysis of land use and land-cover pattern to monitor dynamics of Ngorongoro world heritage site (Tanzania) using hybrid cellular automata-Markov model. Current Research in Environmental Sustainability 4:100126. https://doi.org/10.1016/j.crsust.2022.100126

Näschen, K., Diekkrüger, B., Evers, M., Höllermann, B., Steinbach, S. and Thonfeld, F. (2019). The impact of land use/land cover change (LULCC) on water resources in a tropical catchment in Tanzania under different climate change scenarios. Sustainability 11(24):7083, doi:10.3390/su11247083

Palmate, S.S., Wagner, P.D., Fohrer, N. and Pandey, A. (2022). Assessment of uncertainties in modelling land use change with an integrated cellular automata–Markov Chain model. Environmental Modeling & Assessment, 27(2):275-293. https://doi.org/10.1007/s10666-021-09804-3

Pimentel, D., Huang, X., Cordova, A., & Pimentel, M. (1997). Impact of population growth on food supplies and environment. Population and Environment, 9-14.

Putri, R.A. and Supriatna, S. (2021). Land cover change modeling to identify critical land in the Ciletuh Geopark tourism area, Palabuhanratu, Sukabumi Regency. IOP Conference Series: Earth and Environmental Scienc, 623:012081. doi:10.1088/1755-1315/623/1/012081

Rahmi, K. I. N., Ali, A., Maghribi, A. A., Aldiansyah, S., & Atiqi, R. (2022). Monitoring of land use land cover change using google earth engine in urban area: Kendari city 2000-2021. In IOP Conference Series: Earth and Environmental Science (Vol. 950, No. 1, p. 012081). IOP Publishing. doi:10.1088/1755-1315/950/1/012081

Rumengan, S. H., Kumurur, V. A., & Moniaga, I. L. (2019). Persebaran Suhu Permukaan dan Pemanfaatan Lahan di Kota Manado. SPASIAL, 6(2), 231-239.

Shang, C. and Wu, J. (2022). A legendary landscape in peril: land use and land cover change and environmental impacts in the Wulagai River Basin, Inner Mongolia. Journal of Environmental Management 301:113816, doi:10.1016/j.jenvman.2021.113816

Strategi Pembangunan Permukiman dan Infrastruktur Perkotaan (SPPIP). (2012). Retrivied from http:ciptakarya.pu.go.id

Tan, S., Liu, Q. and Han, S. (2022). Spatial-temporal evolution of coupling relationship between land development intensity and resources environment carrying capacity in China. Journal of Environmental Management 301:113778. https://doi.org/10.1016/j.jenvman.2021.113778

Teklay, A., Dile, Y.T., Asfaw, D.H., Bayabil, H.K. and Sisay, K. (2021). Impacts of climate and land use change on hydrological response in Gumara Watershed, Ethiopia. Ecohydrology & Hydrobiology 21(2). https://doi.org/10.1016/j.ecohyd.2020.12.001

Tran, D.X., Pla F., Latorre-Carmona P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use and land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. https://doi.org/10.1016/j.isprsjprs. 2017.01.001.

United Nations (2018). 2018 Revision of world urbanization prospects. New York: Department of Economic and Social Affairs.

Zadeh, L.A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM 37(3):77-84

Zheng, H.W., Shen, G.Q., Wang, H. and Hong, J. (2015). Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat International 46:23-34. https://doi.org/10.1016/j.habitatint.2014.10.008




DOI: https://doi.org/10.21831/gm.v22i1.52278

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Septianto Aldiansyah, Supriatna Supriatna

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Supervised by:

 

Geomedia: Majalah Ilmiah dan Informasi Kegeografian indexing by
  

Creative Commons License
Geo Media: Majalah Ilmiah dan Informasi Kegeografian is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://journal.uny.ac.id/index.php/geomedia.

 

 View My Stats