A Conceptual Ontology Framework for Culturally-Adaptive Mobile Learning Interfaces: Integrating the Indonesian Wellbeing Scale

Authors

  • Bhanu Sri Nugraha Universitas Amikom Yogyakarta, Indonesia
  • Muhammad Suyanto Dept. of Informatics Doctorate Universitas Amikom Yogyakarta, Indonesia
  • Kusrini Dept. of Informatics Doctorate Universitas Amikom Yogyakarta, Indonesia
  • Ema Utami Dept. of Informatics Doctorate Universitas Amikom Yogyakarta, Indonesia

DOI:

https://doi.org/10.21831/elinvo.v10i1.83437

Keywords:

Adaptive user interface, indonesian wellbeing scale, ontology modeling, mobile learning, user experience

Abstract

This research addresses the lack of cultural sensitivity in existing Adaptive User Interface (AUI) frameworks, which predominantly rely on Western-centric paradigms and often overlook the collective and spiritual dimensions of student well-being. To bridge this gap, this study proposes a conceptual ontology framework that operationalizes the Indonesian Wellbeing Scale (IWS) into computational adaptation logic for mobile learning applications. Adopting a Design Science Research approach utilizing the NeOn methodology, we formally modeled multidimensional context factors—specifically spiritual observances, social relations, and self-acceptance—into a machine-readable semantic taxonomy. The proposed ontology was rigorously validated using a two-tiered verification strategy: logical consistency checking via the HermiT reasoner and functional validation through Competency Questions (CQs) mapped to SPARQL queries. The results demonstrate that the framework successfully infers complex user needs and triggers appropriate interface adaptations, such as prioritizing community interactions during social isolation or scheduling spiritual alerts, without logical conflicts. This study contributes a validated computational model for Culturally-Adaptive User Interfaces, providing a robust semantic foundation for future physical implementation and empirical user evaluation.

References

[1] A. Kuriachan, R. R. Thomas, and R. Sukanya, “Place-Based Strategies, Multichannel Merger, and Context-Driven Alerts for Engagement With Mobile Marketing:,” in Advances in Marketing, Customer Relationship Management, and E-Services, H. R. Irani and H. Nozari, Eds., IGI Global, 2024, pp. 198–229. doi: 10.4018/979-8-3693-1339-8.ch012.

[2] M. Ali, M. Raheel, M. W. Iqbal, and D. Irfan, “Performance Analysis of Self-adaptive User Interface for Mobile Users (Systematic Literature Review),” in Computing and Emerging Technologies, vol. 2055, M. Arif, A. Jaffar, and O. Geman, Eds., in Communications in Computer and Information Science, vol. 2055. , Cham: Springer Nature Switzerland, 2025, pp. 130–150. doi: 10.1007/978-3-031-77617-5_12.

[3] Z. Stefanidi, G. Margetis, S. Ntoa, and G. Papagiannakis, “Real-Time Adaptation of Context-Aware Intelligent User Interfaces, for Enhanced Situational Awareness,” IEEE Access, vol. 10, pp. 23367–23393, 2022, doi: 10.1109/ACCESS.2022.3152743.

[4] M. Ali, S. U. R. Khan, A. Mashkoor, and A. Taskeen, “A conceptual framework for context-driven self-adaptive intelligent user interface based on Android,” Cogn. Technol. Work, vol. 26, no. 1, pp. 83–106, Feb. 2024, doi: 10.1007/s10111-023-00749-z.

[5] H. Nordin, D. Singh, Z. Mansor, and E. Yadegaridehkordi, “Impact of Power Distance Cultural Dimension in E-Learning Interface Design Among Malaysian Generation Z Students,” IEEE Access, vol. 10, pp. 64199–64208, 2022, doi: 10.1109/ACCESS.2022.3183117.

[6] L. V. Nguyen, “Culturally Responsive AI Scaffolding in Collaborative Language Education: Exploring Sociocultural Adaptations across Diverse Learning Contexts,” J. Posthumanism, vol. 5, no. 10, pp. 353–367, Oct. 2025, doi: 10.63332/joph.v5i10.3551.

[7] A. Alsswey, H. Al-Samarraie, and Malakeh. Z. Malak, “Older adults’ satisfaction with mHealth UI design-based culture: A case study of Jordan,” J. Hum. Behav. Soc. Environ., vol. 33, no. 4, pp. 565–577, May 2023, doi: 10.1080/10911359.2022.2074183.

[8] H. Maulana, N. Khawaja, and P. Obst, “An Indonesian model of well-being: The integration of universal and cultural factors,” PsyCh J., vol. 10, no. 1, pp. 141–154, Feb. 2021, doi: 10.1002/pchj.402.

[9] H. Maulana, N. Khawaja, and P. Obst, “Development and validation of the Indonesian Well‐being Scale,” Asian J. Soc. Psychol., vol. 22, no. 3, pp. 268–280, Sept. 2019, doi: 10.1111/ajsp.12366.

[10] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, “The NeOn Methodology for Ontology Engineering,” in Ontology Engineering in a Networked World, M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Motta, and A. Gangemi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–34. doi: 10.1007/978-3-642-24794-1_2.

[11] M. C. Suárez-Figueroa, A. Gómez-Pérez, and M. Fernández-López, “The NeOn Methodology framework: A scenario-based methodology for ontology development,” Appl. Ontol., vol. 10, no. 2, pp. 107–145, Sept. 2015, doi: 10.3233/AO-150145.

[12] A. A. C. D. Freitas, S. D. Costa, M. B. Scalser, and M. P. Barcellos, “Using Networked Ontologies to Support the Development of Software Systems with Adaptive User Interface,” J. Interact. Syst., vol. 14, no. 1, pp. 257–273, July 2023, doi: 10.5753/jis.2023.3256.

[13] W. Wang, H. Khalajzadeh, J. Grundy, A. Madugalla, and H. O. Obie, “Adaptive User Interfaces for Software Supporting Chronic Disease,” in Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society, Lisbon Portugal: ACM, Apr. 2024, pp. 118–129. doi: 10.1145/3639475.3640104.

[14] M. Waseem Iqbal, M. Raza Naqvi, M. Adnan Khan, F. Khan, and T. Whangbo, “Mobile Devices Interface Adaptivity Using Ontologies,” Comput. Mater. Contin., vol. 71, no. 3, pp. 4767–4784, 2022, doi: 10.32604/cmc.2022.023239.

[15] M. Bartling, B. Resch, S. Trösterer, and A. Eitzinger, “Evaluating PPGIS Usability in a Multi-National Field Study Combining Qualitative Surveys and Eye-Tracking,” Cartogr. J., vol. 58, no. 2, pp. 167–182, Apr. 2021, doi: 10.1080/00087041.2020.1842143.

[16] M. W. Iqbal, “User Context Ontology for Adaptive Mobile-Phone Interfaces,” IEEE Access, vol. 9, no. Query date: 2024-06-08 20:47:18, pp. 96751–96762, 2021, doi: 10.1109/ACCESS.2021.3095300.

[17] K. A. Aljedaani and R. A. Alnanih, “Grounded Theory for the Design of Mobile User Interfaces-Based on Space Retrieval Therapy,” Int. J. Interact. Mob. Technol. IJIM, vol. 15, no. 12, p. 104, June 2021, doi: 10.3991/ijim.v15i12.21487.

[18] M. Ali, S. U. R. Khan, A. Mashkoor, and A. Taskeen, “A conceptual framework for context-driven self-adaptive intelligent user interface based on Android,” Cogn. Technol. Work, vol. 26, no. 1, pp. 83–106, Feb. 2024, doi: 10.1007/s10111-023-00749-z.

[19] S. Medjden, N. Ahmed, and M. Lataifeh, “Adaptive user interface design and analysis using emotion recognition through facial expressions and body posture from an RGB-D sensor,” PLOS ONE, vol. 15, no. 7, p. e0235908, July 2020, doi: 10.1371/journal.pone.0235908.

[20] G. Hofstede, “Dimensionalizing Cultures: The Hofstede Model in Context,” Online Read. Psychol. Cult., vol. 2, no. 1, Dec. 2011, doi: 10.9707/2307-0919.1014.

[21] T. Ariel Tandra and L. E. F. Rofil, “Cultural Dimensions and Intercultural User Interface Design (IUID) in a Learning Management System: Indonesian and International Student Perspectives,” E3S Web Conf., vol. 426, p. 01100, 2023, doi: 10.1051/e3sconf/202342601100.

[22] M. Z. Al Farisi, H. Maulani, A. B. Hardoyo, S. M. Khalid, and N. Saleh, “Investigating Arabic language teaching materials based on Indonesian folklore: an ethnographic study on the folktale of ‘Bandung,’” Asian Educ. Dev. Stud., vol. 13, no. 2, pp. 134–149, Apr. 2024, doi: 10.1108/AEDS-07-2023-0082.

[23] A. Maulana, S. Rejeki, S. Sakban, and I. Isnaini, “Student Perceptions of Strengthening and Instilling Character Education Based on the Noble Values of the Indonesian Nation in SB KAMUS Gombok Utara,” QALAMUNA J. Pendidik. Sos. Dan Agama, vol. 16, no. 1, pp. 349–360, May 2024, doi: 10.37680/qalamuna.v16i1.4912.

[24] G. M. Mustafa, T. U. Urooj, and M. Aslam, “ROLE OF ARTIFICIAL INTELLIGENCE FOR ADAPTIVE LEARNING ENVIRONMENTS IN HIGHER EDUCATION BY 2030,” J. Soc. Res. Dev., vol. 5, no. 03, pp. 12–22, Aug. 2024, doi: 10.53664/JSRD/05-03-2024-02-12-22.

[25] R. N. A’yuninnisa and L. Adrianson, “Subjective well-being of Indonesian and Swedish college students: A cross-cultural study on happiness,” Int. J. Res. Stud. Psychol., vol. 8, no. 2, Sept. 2019, doi: 10.5861/ijrsp.2019.4007.

[26] W. Prasetyawati, T. Rifameutia, R. Gillies, and P. Newcombe, “The Adaptation of a Brief Adolescent Subjective Well-Being in School Scale (BASWBSS), the Student Subjective Well-Being Scale in the Indonesian Context [Adaptasi BASWBSS, Skala Kesejahteraan Subjektif Siswa dalam Konteks Indonesia],” ANIMA Indones. Psychol. J., vol. 36, no. 2, pp. 184–203, July 2021, doi: 10.24123/aipj.v36i2.2277.

[27] C. Shimizu, K. Hammar, and P. Hitzler, “Modular ontology modeling,” Semantic Web, vol. 14, no. 3, pp. 459–489, Apr. 2023, doi: 10.3233/SW-222886.

[28] A. A. C. D. Freitas, S. D. Costa, M. B. Scalser, and M. P. Barcellos, “Using Networked Ontologies to Support the Development of Software Systems with Adaptive User Interface,” J. Interact. Syst., vol. 14, no. 1, pp. 257–273, July 2023, doi: 10.5753/jis.2023.3256.

[29] W. Nie, K. De Vita, and T. Masood, “An Ontology for Defining and Characterizing Demonstration Environments,” SSRN Electron. J., 2022, doi: 10.2139/ssrn.4211561.

[30] T. Bao, K. Chen, H. Zhang, Z. Zhang, Q. Ai, and J. Yan, “Comprehensive Calculation Method of Semantic Similarity of Transport Infrastructure Ontology Concept Based on SHO-BP Algorithm,” Appl. Sci., vol. 13, no. 19, p. 10587, Sept. 2023, doi: 10.3390/app131910587.

[31] M. SaberiKamarposhti and M. Sahlabadi, Eds., Latest Advances and New Visions of Ontology in Information Science. IntechOpen, 2023. doi: 10.5772/intechopen.102276.

[32] H. Ahmad, F. Ullah, and R. Jafri, “A Survey on Immersive Cyber Situational Awareness Systems,” J. Cybersecurity Priv., vol. 5, no. 2, p. 33, June 2025, doi: 10.3390/jcp5020033.

[33] Y. Guo et al., “Extending X-reality technologies to digital twin in cultural heritage risk management: a comparative evaluation from the perspective of situation awareness,” Herit. Sci., vol. 12, no. 1, p. 245, July 2024, doi: 10.1186/s40494-024-01363-6.

[34] W. Wang, “Adaptive user interfaces in systems targeting chronic disease: a systematic literature review,” User Model. User-Adapt. Interact., no. Query date: 2024-06-08 20:47:18, 2023, doi: 10.1007/s11257-023-09384-9.

[35] Y. Feng, Y. Qi, H. Li, X. Wang, and J. Tian, “Leveraging federated learning and edge computing for recommendation systems within cloud computing networks,” in Third International Symposium on Computer Applications and Information Systems (ISCAIS 2024), W. Li and H. Wang, Eds., Wuhan, China: SPIE, July 2024, p. 28. doi: 10.1117/12.3034773.

[36] Y. Chen, J. Zhao, Y. Wu, J. Huang, and X. Shen, “QoE-Aware Decentralized Task Offloading and Resource Allocation for End-Edge-Cloud Systems: A Game-Theoretical Approach,” IEEE Trans. Mob. Comput., vol. 23, no. 1, pp. 769–784, Jan. 2024, doi: 10.1109/TMC.2022.3223119.

[37] A. Koubaa, A. Ammar, M. Abdelkader, Y. Alhabashi, and L. Ghouti, “AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs,” Remote Sens., vol. 15, no. 7, p. 1873, Mar. 2023, doi: 10.3390/rs15071873.

[38] Y. Xiao, Z. Sun, G. Shi, and D. Niyato, “Imitation Learning-Based Implicit Semantic-Aware Communication Networks: Multi-Layer Representation and Collaborative Reasoning,” IEEE J. Sel. Areas Commun., vol. 41, no. 3, pp. 639–658, Mar. 2023, doi: 10.1109/JSAC.2022.3229419.

Downloads

Published

2025-05-30

How to Cite

Nugraha, B. S., Suyanto, M., Kusrini, & Utami, E. (2025). A Conceptual Ontology Framework for Culturally-Adaptive Mobile Learning Interfaces: Integrating the Indonesian Wellbeing Scale. Elinvo (Electronics, Informatics, and Vocational Education), 10(1), 101–115. https://doi.org/10.21831/elinvo.v10i1.83437

Issue

Section

Articles

Citation Check