Freshness Levels and Changes in NH3, H2S Gases, and Color in Beef During Room Temperature Storage

Authors

  • Erlina Nur Arifani Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147., Indonesia https://orcid.org/0009-0007-9510-6340
  • Sevia Indah Purnama Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147., Indonesia https://orcid.org/0000-0003-3814-0570
  • Mas Aly Afandy Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147., Indonesia https://orcid.org/0000-0003-4821-8191
  • Danny Kurnianto Kurnianto Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147., Indonesia https://orcid.org/0000-0002-0426-8915
  • Nurul Latifasari Latifasari Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147., Indonesia https://orcid.org/0000-0002-9564-847X

Keywords:

Color, Freshness Meat, H2S, Kinetic Reaction, NH3.

Abstract

The degradation of beef is typically indicated by the presence of ammonia (NH3) and hydrogen sulfide (H2S). The NH3 and H2S level will increase in line with the meat spoilage. This research is aims to develop the new meat storage with NH3 and H2S level measurement to detect spoilage in beef. This measurement is needed to make sure the meat that are store is still in good condition or already spoil. Kinetic model of NH3 and H2S gas is used to determine the correlation between meat spoilage with time. The main parts of this equipment are a sensor system microcontroller and computer. The MQ 137 sensor is used to detect the smell of NH3 gas emitted by beef samples during observation. The MQ – 136 sensor is used to detect H2S gas. This research also analyze the color change in beef spoilage. The data of meat storage develop in this research shows that it can properly measure NH3 and H2S gases that occur during the gas evolution process. The color of the meat also change while the meat spoilage starts. The rate constants of change of H2S and NH3 follow the zero order kinetics of H2S and NH3 with constant rates of 0.90 and 0.95, respectively. This result shows that time highly correlated with the spoilage meat.

Author Biographies

Erlina Nur Arifani, Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147.

Department Food Technology.

Faculty of Industrial Engineering.

Telkom Purwokerto University.

Indonesia.

Sevia Indah Purnama, Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147.

Department Biomedical Engineering.

Faculty of Electrical Engineering.

Telkom Purwokerto University.

Indonesia.

Mas Aly Afandy, Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147.

Department Telecommunications Engineering.

Faculty of Electrical Engineering.

Telkom Purwokerto University.

Indonesia.

Danny Kurnianto Kurnianto, Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147.

Department D3 Telecommunications Engineering.Faculty of Applied Sciences.

Telkom Purwokerto University.

Indonesia.

Nurul Latifasari Latifasari, Telkom University Purwokerto Jl. DI Panjaitan No.128, Karangreja, Purwokerto Kidul, Kec. Purwokerto Sel., Kabupaten Banyumas, Jawa Tengah 53147.

Department Food Technology.

Faculty of Industrial Engineering.

Telkom Purwokerto University.

Indonesia.

References

REFERENCES (11pt)

R. L. Contreras, "Factors Determining Meat Quality and Cold Preservation Methods to Extend Shelf Life," Open Access J. Biomed. Sci., vol. 4, no. 1, 2022, doi: 10.38125/oajbs.000377.

M. Arnaudova, T. A. Brunner, and F. Gí¶tze, "Examination of students' willingness to change behaviour regarding meat consumption," Meat Sci., vol. 184, 2022, doi: 10.1016/j.meatsci.2021.108695.

C. H. S. Ruxton and S. Gordon, "Animal board invited review: The contribution of red meat to adult nutrition and health beyond protein," Animal, vol. 18, no. 3, 2024, doi: 10.1016/j.animal.2024.101103.

M. C. Onwezen, E. P. Bouwman, M. J. Reinders, and H. Dagevos, "A systematic review on consumer acceptance of alternative proteins: Pulses, algae, insects, plant-based meat alternatives, and cultured meat," Appetite, vol. 159, no. November 2020, 2021, doi: 10.1016/j.appet.2020.105058.

X. Wu, X. Liang, Y. Wang, B. Wu, and J. Sun, "Non-Destructive Techniques for the Analysis and Evaluation of Meat Quality and Safety: A Review," Foods, vol. 11, no. 22, pp. 1–30, 2022, doi: 10.3390/foods11223713.

N. R. W. Geiker et al., "Meat and human health"”current knowledge and research gaps," Foods, vol. 10, no. 7, pp. 1–17, 2021, doi: 10.3390/foods10071556.

P. Nastiti, N. Bintoro, J. Karyadi, S. Rahayoe, and D. Nugroho, "Classification of Freshness Levels and Prediction of Changes in Evolution of NH3 and H2S Gases from Chicken Meat during Storage at Room Temperature," J. Tek. Pertan. Lampung (Journal Agric. Eng., vol. 11, no. 1, p. 90, 2022, doi: 10.23960/jtep-l.v11i1.90-98.

V. S. Kartika, M. Rivai, and D. Purwanto, "Spoiled meat classification using semiconductor gas sensors, image processing and neural network," 2018 Int. Conf. Inf. Commun. Technol. ICOIACT 2018, vol. 2018-Janua, no. March, pp. 418–423, 2018, doi: 10.1109/ICOIACT.2018.8350678.

S. Karanth, S. Feng, D. Patra, and A. K. Pradhan, "Linking microbial contamination to food spoilage and food waste: the role of smart packaging, spoilage risk assessments, and date labeling," Front. Microbiol., vol. 14, no. June, pp. 1–17, 2023, doi: 10.3389/fmicb.2023.1198124.

V. K. Pal, P. Bandyopadhyay, and A. Singh, Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses, vol. 70, no. 5. 2018. doi: 10.1002/iub.1740.

B. Journal, "Paulo, Piracicaba, SP, Brasil; 2 Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sí£o Paulo, Pirassununga, SP," Brazilian J. Microbiol., vol. 2008, pp. 1–11, 2011.

T. Cahyanto, Y. Suryani, A. Adawiyah, Y. Kulsum, and I. Kurniawan, "Detection of Pork Contamination on Meat-Based Foods at Public Elementary School In Bandung," no. January, pp. 1–8, 2020, doi: 10.4108/eai.1-10-2019.2291685.

M. Rivai, F. Budiman, D. Purwanto, and J. Simamora, "Meat freshness identification system using gas sensor array and color sensor in conjunction with neural network pattern recognition," J. Theor. Appl. Inf. Technol., vol. 96, no. 12, pp. 3861–3872, 2018.

E. A. Villegas-Cayllahua et al., "Effect of freezing on the quality of breast meat from broilers affected by wooden breast myopathy," Poult. Sci., vol. 102, no. 8, 2023, doi: 10.1016/j.psj.2023.102702.

P. W. Nastiti, N. Bintoro, J. N. W. Karyadi, S. Rahayoe, and A. D. Saputro, "Apparatus development for detecting the freshness of chicken meat using TCS 3200, PH-98108, and MOS gas sensors," Food Res., vol. 7, no. 2, pp. 280–288, 2023, doi: 10.26656/fr.2017.7(2).024.

S. Suprapto, Y. L. Ni'mah, H. Harmami, I. Ulfin, and A. Ardiyanti, "The Identification of Acetic Acid-Ethanol Mixture Using Gas Sensor Array and Ensemble Regression," IJCA (Indonesian J. Chem. Anal., vol. 7, no. 1, pp. 1–11, 2024, doi: 10.20885/ijca.vol7.iss1.art1.

A. S. Rusdianto, W. Amilia, and L. A. P. Malik, "Design of an E-Nose Detector for Contaminated Gas in Cow Farming Waste," Int. J. Food, Agric. Nat. Resour., vol. 4, no. 4, pp. 62–69, 2023, doi: 10.46676/ij-fanres.v4i4.213.

J. Bleicher, E. E. Ebner, and K. H. Bak, "Formation and Analysis of Volatile and Odor Compounds in Meat"”A Review," Molecules, vol. 27, no. 19, pp. 1–31, 2022, doi: 10.3390/molecules27196703.

B. W. B. Holman, A. E. D. A. Bekhit, M. Waller, K. L. Bailes, M. J. Kerr, and D. L. Hopkins, "The association between total volatile basic nitrogen (TVB-N) concentration and other biomarkers of quality and spoilage for vacuum packaged beef," Meat Sci., vol. 179, pp. 9–10, 2021, doi: 10.1016/j.meatsci.2021.108551.

Agata Kinanthi, E. Dyah Yuliarti, and W. Tjahjaningsih, "Test of Total Volatile Base Nitrogen (TVB-N) in Tuna (Thunnus Sp.) at the at the Technical Implementation Unit for Quality Testing and Development of Marine and Fishery Product Banyuwangi, East Java," J. Mar. Coast. Sci., vol. 11, no. 2, pp. 49–55, 2022, doi: 10.20473/jmcs.v11i2.36710.

A. Soni, "Development of Colorimetric On-package Indicator for Monitoring of Chicken Meat Freshness during Refrigerated Storage (4±1°C)," J. Anim. Res., vol. 8, no. 5, 2018, doi: 10.30954/2277-940x.10.2018.16.

L. R. Magnaghi, F. Capone, C. Zanoni, G. Alberti, P. Quadrelli, and R. Biesuz, "Colorimetric sensor array for monitoring, modelling and comparing spoilage processes of different meat and fish foods," Foods, vol. 9, no. 5, 2020, doi: 10.3390/foods9050684.

K. Suhud, S. Sukoma, S. Saleha, and M. S. Surbakti, "Development of TCS3200 Color Sensor Based on Arduino Uno and Its Application in Determining Borax Levels in Food," Indones. J. Fundam. Appl. Chem., vol. 9, no. 2, pp. 74–81, 2024, doi: 10.24845/ijfac.v9.i2.74.

C. N. Sánchez, M. T. Orvañanos-Guerrero, J. Domí­nguez-Soberanes, and Y. M. ílvarez-Cisneros, "Analysis of beef quality according to color changes using computer vision and white-box machine learning techniques," Heliyon, vol. 9, no. 7, pp. 0–11, 2023, doi: 10.1016/j.heliyon.2023.e17976.

R. A. Asmara et al., "Chicken meat freshness identification using colors and textures feature," 2018 Jt. 7th Int. Conf. Informatics, Electron. Vis. 2nd Int. Conf. Imaging, Vis. Pattern Recognition, ICIEV-IVPR 2018, no. June, pp. 93–98, 2018, doi: 10.1109/ICIEV.2018.8640992.

N. D. M. Luong, L. Coroller, M. Zagorec, J. M. Membré, and S. Guillou, "Spoilage of chilled fresh meat products during storage: A quantitative analysis of literature data," Microorganisms, vol. 8, no. 8, pp. 1–29, 2020, doi: 10.3390/microorganisms8081198.

A. A. Baiti, M. Fachrie, and S. Diwandari, "Classification of Beef and Pork Images Based on Color Features and Pseudo Nearest Neighbor Rule," Elinvo (Electronics, Informatics, Vocat. Educ., vol. 8, no. 2, pp. 156–163, 2023, doi: 10.21831/elinvo.v8i2.64810.

A. I. F. Al Isyrofie et al., "Odor clustering using a gas sensor array system of chicken meat based on temperature variations and storage time," Sens. Bio-Sensing Res., vol. 37, no. July, p. 100508, 2022, doi: 10.1016/j.sbsr.2022.100508.

V. Pothakos, F. Devlieghere, F. Villani, J. Bjí¶rkroth, and D. Ercolini, "Lactic acid bacteria and their controversial role in fresh meat spoilage," Meat Sci., vol. 109, pp. 66–74, 2015, doi: 10.1016/j.meatsci.2015.04.014.

N. Ulupi, Salundik, D. Margisuci, R. Hidayatun, and B. Sugiarto, "Growth performance and production of ammonia and hydrogen sulfide in excreta of broiler chickens fed basil (Ocimum basilicum) flour in feed," Int. J. Poult. Sci., vol. 14, no. 2, pp. 112–116, 2015, doi: 10.3923/ijps.2015.112.116.

J. Blunden and V. P. Aneja, "Characterizing ammonia and hydrogen sulfide emissions from a swine waste treatment lagoon in North Carolina," Atmos. Environ., vol. 42, no. 14, pp. 3277–3290, 2008, doi: 10.1016/j.atmosenv.2007.02.026.

N. E. Diether and B. P. Willing, "Microbial fermentation of dietary protein: An important factor in diet–microbe–host interaction," Microorganisms, vol. 7, no. 1, pp. 9–10, 2019, doi: 10.3390/microorganisms7010019.

J. H. Bergstedt, P. V. Skov, and C. O. Letelier-Gordo, "Efficacy of H2O2 on the removal kinetics of H2S in saltwater aquaculture systems, and the role of O2 and NO3−," Water Research, vol. 222. 2022. doi: 10.1016/j.watres.2022.118892.

D. F. Olivera, R. Bambicha, G. Laporte, F. C. Cárdenas, and N. Mestorino, "Kinetics of colour and texture changes of beef during storage," J. Food Sci. Technol., vol. 50, no. 4, pp. 821–825, 2013, doi: 10.1007/s13197-012-0885-7.

B. Ling, J. Tang, F. Kong, E. J. Mitcham, and S. Wang, "Kinetics of Food Quality Changes During Thermal Processing: a Review," Food Bioprocess Technol., vol. 8, no. 2, pp. 343–358, 2015, doi: 10.1007/s11947-014-1398-3.

Published

2025-06-24

How to Cite

Arifani, E. N., Purnama, S. I., Afandy, M. A., Kurnianto, D. K., & Latifasari, N. L. (2025). Freshness Levels and Changes in NH3, H2S Gases, and Color in Beef During Room Temperature Storage. Elinvo (Electronics, Informatics, and Vocational Education), 10(1). Retrieved from https://journal.uny.ac.id/index.php/elinvo/article/view/77601

Citation Check