ANALYSIS EFFECT OF WALL DIMENSIONS ON THERMAL RESISTANCE IN FURNACE INDUCTION 1200 ⁰C

Authors

DOI:

https://doi.org/10.21831/dinamika.v8i1.53747

Keywords:

Metal Hardening, Induction, Thermal resistance, Dimension

Abstract

The development of metal hardening industry using electrical induction to increase the hardening temperature chamber is very quick. The temperature can reach 1200 °C in short time by adjusting the electricity input to heater. However, the temperature can also decrease significantly, if the thermal resistance of room cannot prevent heat transfer to outside. The research method uses analysis of other research and direct measurements on induction furnace machine. The machine specifications have maximum room temperature (T1= 1200 ℃), surrounding temperature (T2= 25.8 °C), and the firebrick thermal conductivity (k= 4.78 J/s m°C). Researchers focused on testing variations dimensions (breadth and thickness) of walls. Based on calculation results, the best thermal resistance is 1.1308 in dimension 2 with breadth of 259 cm2 and thickness of 14 cm. This is in accordance with theory of thermal resistance that the higher thermal resistance produced, the higher ability of material to inhibit rate of heat flow.

Author Biographies

Ahmad Zohari, Politeknik Gajah Tunggal

D3 Teknik Mesin

Eka Bima Saputra, Politeknik Gajah Tunggal

D3 Teknik Mesin

Rivaldo Rivaldo, Politeknik Gajah Tunggal

D3 Teknik Mesin

Sigit Ariyanto, Politeknik Gajah Tunggal

D3 Teknik Mesin

Andriansyah Andriansyah, Politeknik Gajah Tunggal

D3 Teknik Mesin

References

Ajiwiguna, T. A., Barkah, A., & Abrar. (2016). Pengaruh Laju Aliran Udara Terhadap Hambatan Termal Heat Sink Untuk Pendingin Elektronik. Jurnal Penelitian Dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, Dan Elektronika (TEKTRIKA), 1(2), 144–147. https://doi.org/https://doi.org/10.25124/tektrika.v1i2.1748

Budi, A. N. S., Qiram, I., & Sartika, D. (2021). Pengaruh Prosentase Kepekatan Kaca Film Terhadap Distribusi Termal dan Pencahayaan Kabin Kendaraan. Jurnal V-Mac, 6(1), 1–4. https://doi.org/https://doi.org/10.36526/v-mac.v6i1.1293

Holman, J. P. (2008). Heat Transfer (J. Llyold, Ed.; 10th ed.). McGraw-Hill.

Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2017). Fundamentals of Heat and Mass Transfer (J. Hayto, Ed.; 8th ed.). John Wiley & Sons.

Pramesti, Y. S., & Akbar, A. (2021). Analisa Heat Transfer Pada Electric Furnace 3 Fasa. Jurnal Mesin Nusantara, 3(2), 102–111. https://doi.org/10.29407/jmn.v3i2.15574

Suprastiyo, H., & Harmi Tjahjanti, P. (2016). Pembuatan Electric Furnace Berbasis Mikrokontroler. Jurnal REM (Rekayasa Energi Manufaktur), 1(2), 1–5. https://doi.org/https://doi.org/10.21070/r.e.m.v1i2.559

Wardhani, V. I. S., & Rahardjo, H. P. (2015). Pengukuran Konduktivitas Termal Bata Incinerator Batan Bandung. Prosiding Seminar Nasional Sains Dan Teknologi Nuklir, 442–446.

Wright, B., Zulli, P., Bierbrauer, F., & Panjkovic, V. (2003). Assessment of Refractory Condition in a Blast Furnace Hearth Using Computational Fluid Dynamics. Third International Conference on CFD in the Minerals and Process Industries, 645–650. https://www.researchgate.net/publication/267936756

Downloads

Published

2023-04-30

How to Cite

Zohari, A., Saputra, E. B., Rivaldo, R., Ariyanto, S., & Andriansyah, A. (2023). ANALYSIS EFFECT OF WALL DIMENSIONS ON THERMAL RESISTANCE IN FURNACE INDUCTION 1200 ⁰C. Jurnal Dinamika Vokasional Teknik Mesin, 8(1). https://doi.org/10.21831/dinamika.v8i1.53747

Issue

Section

Articles