Karakterisasi Ketahanan Lelah Takik Ulir Whitworth Akibat Pembebanan Puntir Dinamis pada Baja Karbon Rendah

A Hasan Atho’ullah, Pendidikan Teknik Mesin Fakultas Teknik Universitas Negeri Semarang
Heri Yudiono, Pendidikan Teknik Mesin Fakultas Teknik Universitas Negeri Semarang


This study aims to analyze Whitworth thread's fatigue characterization due to dynamic twisting on low carbon steel. The research method uses experiments with pre-experimental design with the form of intact group comparison. The experimental group was specimens with Whitworth thread notch depth of 0.67 mm, 0.81 mm, and 1.16 mm. The control group was Whitworth threads with a notch depth of 0.9 mm. The study used low carbon steel with a carbon content of 0.12% wt. The dynamic torsion testing with a twisting angle of 5 reveals that the deeper the Whitworth thread notch, the lower the fatigue resistance. The fracture surface is visible due to dynamic torsion in the form of initial crack, crack propagation rate, and final crack.

Fenomena kegagalan lelah disebabkan oleh pola pembebanan dan bentuk takikan. Pola pembebanan terjadi karena puntir lentur dan puntir dinamis. Bentuk takikan diperlukan karena tuntutan desain, salah satunya adalah takik ulir whitworth. Penelitian ini bertujuan untuk menganalisis karakterisasi ketahanan lelah ulir whitworth akibat pembebanan puntir dinamis pada baja karbon rendah. Metode penelitian menggunakan eksperimen dengan pre-experimental design dengan bentuk intact-group comparison. Kelompok eksperimen adalah spesimen dengan kedalaman takik ulir whitworth 0.67 mm, 0.81 mm, dan 1.16 mm. Kelompok kontrol dengan kedalaman takik ulir whitworth sebesar  0.9 mm. Penelitian menggunakan baja karbon rendah dengan kandungan karbon sebesar 0.12% wt. Hasil pengujian puntir dinamis mengungkapkan bahwa semakin dalam takik ulir withworth maka ketahanan lelahnya semakin menurun. Bentuk penampang patah akibat pembebanan puntir dinamis berupa initial crack, crack propagation rate dan final crack.


whitworth thread, dynamic twisting, fatigue, fracture surface area, ulir whitworth, puntir dinamis, ketahanan lelah, bentuk penampang patah

Full Text:



Agrawal R, Uddanwadiker R, Padole P,Veerabu J. 2014. Effect of stress concentration in low cycle fatigue life prediction at high temperature. Journal of Basic and Applied Engineering Research. Volume 1. Nomor 2, 69-72.

Alang NA, Razak N, Miskam A. 2011. Effect of surface roughness on fatigue life of notched carbon steel. International Journal of Engineering & Technology (IJET-IJENS). Volume 11. Nomor 1, 160-163.

Araújo J, Dantas A, Castro F, Mamiya E, Ferreira J. 2011. On the characterization of the critical plane with a simple and fast alternative measure of the shear stress amplitude in multiaxial fatigue. International Journal of Fatigue. Volume 33. Nomor 8, 1092-1100.

Arola D & Wiliams C. 2002. Estimating the fatigue stress concentration factor of machined surfaces. International Journal of Fatigue. Volume 24. Nomor 9, 923-930.

Asad A, Bjork T, Heinilla S. 2012. A finite element approach to predict the stress concentration factors in cold formed corners. International Journal of Mechanical and Mechathronics Engineering IJMME-IJENS. Volume 12. Nomor 4, 94-98.

Bader Q & Kadum E. 2014. Effect of V notch shape on fatigue life in steel beam made of high carbon steel alloy AISI 1078. International Journal of Modern Engineering Research (IJMER). Volume 4. Nomor 7, 1-8.

Bader Q & Njim E. 2014. Experimental and numerical study of influence the loading mode on fatigue life in notched steel beam. International Journal Of Scientific & Engineering Research. Volume 5. Nomor 7, 819-827.

Callister Jr., William D. D. G. Rethwisch. 2011. Material science and engineering an introduction. John Wiley and Sons.

Cesnik M & Slavic J. 2014. Vibrational fatigue and structural dynamics for harmonic and random loads. Journal of Mechanical Engineering. Volume 60. Nomor 5, 339-348.

Chou TY, Tsai H, Yip MC. 2019. Preparation of CFRP with modified MWCNT to improve the mechanical properties and torsional fatigue of epoxy/polybenzoxazine copolymer. Composites Part A: Applied Science and Manufacturing. Volume 118, 30-40.

Fatemi A, Molaei R, Sharifimehr S, Shamsaei N, Phan N. 2017. Torsional fatigue behavior of wrought and additive manufactured Ti-6AI-4V by powder bed fusion including surface finish effect. International Journal of Fatigue.

Ha J, Kim SK, Cobenca N, Kim H. 2013. Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. JOE. Volume 39. Nomor 3, 389-393.

Hendrickson D. 2005. Fatigue failure due to variable loading. Department of Computer Science, Physics, and Engineering.

Hussain F, Abdullah S, Nuawi M. Effect of temperature on fatigue life behaviour of alumunium alloy AA6061 using analytical approach. Journal of Mechanical Engineering and Sciences (JMES). Volume 10. Nomor 3, 2324-2335.

Itoh T, Sakane M, Ohsuga K. 2013. Multiaxial low cycle fatigue life under non-proportional loading. International Journal of Pressure Vessels and Piping. Volume 110, 50-65.

Kamal M, Rahman MM, Rahman AGA. 2012. Fatigue Life Evaluation of Suspension Knuckle using Multibody Simulation Technique. Journal of Mechanical Engineering and Sciences. 3:291-300.

Kwofie S & Chandler H. 2001. Low cycle fatigue under tensile mean stresses where cyclic life extension occurs. International Journal of Fatigue. Volume 23. Nomor 4, 341-345.

La Rosa G, Lo Savio F, Pedulla E, Rapisarda E. 2017. A new torquemeter to measure the influence of heat-treatment on torsional resistance on NiTi endodontic instrumen. Elsevier, 1-12.

Liu J, Li J, Zhang Z-p. 2013. A three-parameter model for predicting fatigue life of ductile metals under constant amplitude multiaxial loading. Journal of materials engineering and performance. Volume 22. Nomor 4, 1161-1169.

Mamidi NJ, Kumar J, Nethi R, Kadali V. 2018. Impact of notch depth on the fatigue life of AISI 316L austenitic stainless steel. International Research Journal of Engineering and Technology (IRJET). Volume 5. Nomor 9, 1149-1151.

Miranda ACO, Antunes MA, Alarcon MVG, Meggiolaro MA, Castro JTP. 2019. Use of the stress gradient factor to estimate fatigue stress concentration factors Kf. Engineering Fracture Mechanics. Volume 206, 250-266.

Mohamed SAN, Abdullah S, Arifin A, Ariffin AK, Padzi MM. 2016. Characterization of the biaxial fatigue behaviour on medium carbon steel using the strain-life approach. International Journal of Automotive and Mechanical Engineering (IJAME). Volume 13. Nomor 1, 3262-3277.

Noda N & Takase Y. 2005. Stress concentration formula useful for all notch shape in a round bar (comparison between torsion, tension and bending). International Journal of Fatigue. Volume 28. Nomor 2, 151-163.

Rahman M.M, Ariffin A.K., Abdullah S., Noor M.M., Bakar R.A., Maleque M.A. 2008. Finite element based fatigue life prediction of cylinder head for two-stroke linear engine using stress-life approach. Journal of Applied Sciences. Volume 8. Nomor 19, 3316-3327.

Shang D-G, Sun G-Q, Deng J, Yan C-L. 2007. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue.

Yan W, Xu Y, Wang K. 2016. Investigation of stress concentration and casing strength degradation caused by corrosion pits. International Journal of Corrosion. Volume 2016.

DOI: https://doi.org/10.21831/dinamika.v5i2.34796


  • There are currently no refbacks.

Copyright (c) 2020 Jurnal Dinamika Vokasional Teknik Mesin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Lisensi Creative Commons 

Jurnal Dinamika Vokasional Teknik Mesin by http://journal.uny.ac.id/index.php/dynamika was distributed under a Creative Commons Attribution 4.0 International License.


View My Stats