Keefektifan CTL Menggunakan Model STAD dan GI Ditinjau dari Prestasi, Komunikasi, dan Sikap terhadap Matematika
Abstract
Penelitian ini bertujuan untuk mendeskripsikan keefektifan pembelajaran dengan pendekatan CTL menggunakan model STAD; mendeskripsikan keefektifan pembelajaran dengan pendekatan CTL menggunakan model GI; dan membandingkan keefektifan antara pembelajaran dengan pendekatan CTL menggunakan model STAD dan pembelajaran dengan pendekatan CTL menggunakan model GI pada materi penerapan teorema Pythagoras ditinjau dari prestasi belajar, komunikasi matematis, dan sikap terhadap matematika siswa kelas VIII SMP Satu Atap. Penelitian ini merupakan penelitian eksperimen semu dengan menggunakan dua kelompok eksperimen. Populasi penelitian mencakup seluruh siswa kelas VIII SMP Satu Atap se-Kecamatan Paninggaran Kabupaten Pekalongan yang terdiri atas empat kelas. Sampel dalam penelitian ini adalah dua kelas yang diambil secara acak dari empat kelas pada populasi tersebut. Hasil penelitian menunjukkan bahwa pembelajaran dengan pendekatan CTL menggunakan model STAD tidak efektif ditinjau dari prestasi belajar dan komunikasi matematis, akan tetapi efektif jika ditinjau dari sikap terhadap matematika; pembelajaran dengan pendekatan CTL menggunakan model GI tidak efektif ditinjau dari prestasi belajar dan komunikasi matematis, akan tetapi efektif jika ditinjau dari sikap terhadap matematika; dan tidak terdapat perbedaan keefektifan yang signifikan antara pembelajaran dengan pendekatan CTL menggunakan model STAD dan GI ditinjau dari prestasi belajar, komunikasi matematis, dan sikap terhadap matematika siswa.
Kata Kunci: pendekatan CTL menggunakan model STAD, pendekatan CTL menggunakan model GI, prestasi belajar, komunikasi matematis, dan sikap terhadap matematika
The Effectiveness of CTL Using STAD and GI Models in Terms of Achievement, Communication, and Attitudes toward Mathematics
Abstract
This research was aimed to describe the effectiveness of instruction with CTL approach using STAD model; to describe the effectiveness of instruction with CTL approach using GI model; and to compare the effectiveness of instruction with CTL approach using STAD and GI models on the topic of Pythagoras Theorem application in terms of students’ achievement, mathematical communication, and attitudes toward mathematics. This research was a quasi-experimental study using two experimental groups. The population of this research was all grade VIII students of Satu Atap Junior High School in sub-district Paninggaran, Pekalongan Regency which consist of four classes. The research sample was selected randomly two out of four classes of population. The results of the research show that instruction with CTL approach using STAD model is not effective in terms of achievement and mathematical communication, but effective in term of attitudes toward mathematics; the instruction with CTL approach using GI model is not effective in terms of achievement and mathematical communication, but effective in terms of attitudes toward mathematics; and there is no significant difference in the effectiveness of instruction with CTL approach using STAD and GI models in terms of students’ achievement, mathematical communication, and attitudes toward mathematics.
Keywords: CTL approach using STAD model, CTL approach using GI model, students’ achievement, mathematical communication, and attitudes toward mathematicsKeywords
Full Text:
PDFReferences
Allen, L.Q. (2006). Investigation culture through cooperative learning. Foreign Languages Annals, 39, 1, 11-21.
Armstrong, S. & Palmer, J. (1998). Student Team Achievement Division (STAD) in 12th grade classroom: effect on student achievement an attitude. Journal of Social Studies Research, 22, 1, 3-6.
Arends, R.I. & Kilcher, A. (2010). Teaching for student learning: becoming an accom-plished teacher. New York: Routledge
Brown, T. & McNamara, O. (2005). New teacher identity and regulative govern-ment the discoursive formation of primary mathematics teacher education. New York: Springer.
Capel, S., Leask, M., & Turner, T. (1997). Learning to teach in the secondary school: a companion to school experience. London: Routledge.
CORD. (1999). Teaching mathematics contex-tually. Texas: CORD Communications, Inc.
Collins, J.W. & O’Brien, N.P. (2003). The Greenwood dictionary of educations. Westport: Greenwood Press.
Crawford, M.L. (2001). Teaching contextually: research, rationale, and techniques for improving student motivation and achievement in mathematics and science. Texas: CCI Publishing, Inc.
Depdiknas. (2002). Pendekatan kontekstual. Jakarta: Depdiknas.
Depdiknas. (2003). Undang-Undang RI Nomor 20, Tahun 2003, tentang Sistem Pendidikan Nasional.
Depdiknas. (2006). Permendiknas No. 22 Tahun 2006, tentang Standar Isi untuk Satuan Pendidikan SMP.
Greenes, C. & Schulman, L. (1996). Communication processes in mathema-tical explorations and investigations. Dalam P.C. Elliot & M.J. Kenney (Eds.), 1996 yearbook: Communication in Mathematics, K-12 and Beyond (pp.159-169). Reston: NCTM.
Johnson, E. B. (2012). Contextual teaching and learning. (Terjemahan Ibnu Setiawan). Thousand Oaks: Corwin Press. (Buku asli diterbitkan tahun 2002).
Johnson, D.W. & Johnson, R.T. (2002). Meaningful assessment: a manageable and cooperative process. Boston: Allyn and Bacon.
Kamarudin, et. al, (2011). A study of effectiveness of the contextual approach to teaching and learning statistics at the Universiti Onn Malaysia. International Journal of Arts & Sciences 4, 25, 305-313.
Kemdikbud. (2013). Permendikbud Nomor 65, Tahun 2013, tentang Standar Proses.
Kulm, G. (1980). Research on mathematics attitudes. Ohio: NCTM.
Maaß, J. & Schlöglmann, W. (2009). Beliefs an attitudes in mathematics education: coalition of the mind. Rotterdam: Sense Publisher.
Marsh, C. (2004). Becoming a teacher. Frenchs Forest: Pearson Education Australia.
Mar’at. (1994). Sikap manusia, perubahan serta pengukurannya. Bandung: Ghalia Indonesia.
NCTM. (2000). Principles and standards for school mathematis. Reston: NCTM.
Sax, G. (1980). Principles of educational and psychological measurement and evaluation. Belmont: Wadworth.
Slavin, R.E. (2005). Cooperative learning: theory, research and practice. (terjemahan Narulita Yusron). Bandung: Nusa Media.
Slavin, R.E. (2006). Educational pychology: theory and practice. Boston: Pearson Education.
Souders, J & Prescott, C. (1999). A case for contextual learning. School in the middle, 9, 3, 1-6.
Souviney, R.J. (1994). Learning to teach mathematics. New York: Macmillan Publishing Company.
DOI: https://doi.org/10.21831/pg.v9i1.9061
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X