Metric Dimension of Banded-Turán Graph
Hartono Hartono, Department of Mathematics Education, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Adrianto, F. A., Permanasari, Y., Sukarsih, I. (2015). Penerapan Pewarnaan Graf sebagai Metode untuk Mencari Solusi Permainan Sudoku. Prosiding Penelitian SPeSIA Unisba, 17-23. https://karyailmiah.unisba.ac.id/index.php/matematika/article/view/1731
Aigner, M. (1995). Turán’s Graph Theorem, The American Mathematical Monthly, 808-815.
Akhter, S., Farooq, R. (2019). Metric dimension of fullerene graphs, Electronic Journal of Graph Theory and Applications, 7 (1), 91-103. https://dx.doi.org/10.5614/ejgta.2019.7.1.7
Alexanderson, G. L. (2006). About The Cover: Euler and Königsberg’s Bridges: A Historical View, Bulletin of the American Mathematical Society, 43 no. 4, 567-573. http://dx.doi.org/10.1090/S0273-0979-06-01130-X
AlHoli, M. M., AbuGhneim, O. A., Al-Ezeh, H. (2017). Metric Dimension of Some Path Related Graphs, Global Journal of Pure and Applied Mathematics, 149-157. https://doi.org/10.1155/2021/2085778
Basudeb, M., Kajal, D. (2017). Overview Applications of Graph Theory in Real Field, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2, 751-759. https://ijsrcseit.com/home/issue/view/article.php?id=CSEIT1725170
Bollobás, B., Mitsche, D., Pralat, P. (2013). Metric dimension for random graphs, The Electronic Journal of Combinatorics, 1-19. https://doi.org/10.37236/2639
Cáceres, J., Garijo, D., Puertas M.L., Seara C. (2010). On determining number and metric dimension of graphs, Electronic Journal of Combinatorics, 17 (1). https://doi.org/10.37236/335
Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R. (2000). Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105, 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0
Dolzan, D. (2016). The Metric Dimension of the Total Graph of A Finite Commutative Ring, Canad. Math. Bull., 59 (4), 748-759. https://doi.org/10.4153/CMB-2016-015-5
Fehr, M., Gosselin, S., Oellermann, O. R. (2006). The metric dimension of Cayley digraphs, Discrete Math., 306, 31-41. https://doi.org/10.1016/j.disc.2005.09.015
Gross, J. L., Yellen, J., Anderson, M. (2019). Graph Theory and Its Applications, CRC Press Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9780429425134
Harary, F., & Melter, R. A. (1976). On the metric dimension of a graph, Ars Combin, 2, 191-195.
Imran, M., Baig, A. Q., Bokhary, S. A. U. H., Javaid, I. (2012). On the metric dimension of circulant graphs, Applied Mathematics Letters, 25, 320-325. https://doi.org/10.1016/j.aml.2011.09.008
Iswadi, H., Baskoro, E. T., Simanjuntak, R. (2011). On the Metric Dimension of Corona Product of Graphs, Far East Journal of Mathematical Sciences (FJMS), 155-170. https://www.pphmj.com/abstract/5882.htm
Khuller, S., Raghavachari, B., Rosenfeld, A. (1994). Localization in Graphs, Technical Report CS-TR-3326, University of Maryland at College Park.
Khuller, S., Raghavachari, B., Rosenfeld, A. (1996). Landmarks in graphs, Discrete Appl. Math., 70, 217-229. https://doi.org/10.1016/0166-218X(95)00106-2
Melter, R. A., Tomescu, I. (1984). Metric bases in digital geometry, Computer Vision, Graphics, and Image Processing, 25, 113-121. https://doi.org/10.1016/0734-189X(84)90051-3
Mutianingsih, N. (2016). Dimensi Metrik Pada Graf Turán, WAHANA: Jurnal Ilmiah Sains & Ilmu Pendidikan, 67. https://doi.org/10.36456/wahana.v67i2.500
Rahman, M. S. (2017). Basic Graph Theory, Springer Nature, Switzerland.
Rehman, S. u., Imran, M., Javaid, I. (2020). On the Metric Dimension of Arithmetric Graph of A Composite Number, Symmetry, 12 (4). https://doi.org/10.3390/sym12040607
Rosen, K. H. (2012). Discrete Mathematics and its Applications, McGraw-Hill, New York.
Saputro, S. W., Baskoro, E. T., Salman, A. N. M., Suprijanto, D. (2009). The metric dimension of a complete n-partite graph and its cartesian product with a path, J. Combin. Math. Combin. Comput., 71, 283-293. https://www.researchgate.net/publication/268624519_The_metric_dimensions_of_a_complete_n-partite_graph_and_its_Cartesian_product_with_a_path
Saputro, S. W., Baskoro, E. T., Salman, A. N. M., Suprijanto, D., Baca, M. (2011). The metric dimension of regular bipartite graphs, Bull. Math. Soc. Sci. Math. Roumanie Tome, 54 (102), 15-28. https://www.researchgate.net/profile/Djoko-Suprijanto/publication/257201731_BBSSS-2011/links/00b7d524a4205c8a7d000000/BBSSS-2011.pdf
Shao, Z., Sheikholeslami, S. M., Wu, P., Liu, J. B. (2018). The Metric Dimension of Some Generalized Petersen Graphs, Hindawi: Discrete Dynamics in Nature and Society.
Slater. PJ. (1975). Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, 14 of Congr. Numer, 549-559.
Slater. PJ. (1988). Dominating and reference sets in a graph, J. Math. Phys. Sci. 22, 445-455.
Sebő, A., Tannier, E. (2004). On Metric Generators of Graphs, Mathematics of Operations Research, 29 (2), 383-393. https://doi.org/10.1287/moor.1030.0070
Zhang, X., Naeem, M. (2021). Metric Dimension of Crystal Cubic Carbon Structure, Hindawi: Journal of Mathematics. https://doi.org/10.1155/2021/3438611
DOI: https://doi.org/10.21831/pythagoras.v19i1.68025
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X