Seleksi Nilai Fuzziness Exponent Optimal pada Algoritma Fuzzy c-Means untuk Mengelompokkan Provinsi di Indonesia Berdasarkan Indikator Pembangunan Ekonomi
Endang Wahyu Handamari, Universitas Brawijaya, Indonesia
Kwardiniya Andawaningtyas, Universitas Brawijaya, Indonesia
Nur Fitriana Setyowati, Universitas Brawijaya, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Ahmad, A. (2016). Evaluation of modified categorical data fuzzy clustering algorithm on the Wisconsin Breast Cancer dataset. Scientifica (Cairo), 2016, 1-6. https://doi.org/10.1155/2016/4273813
Alia, O. M. (2014). A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks. The Scientific World Journal, 2014, 1-9. https://doi.org/10.1155/2014/647281
Atiyah, I. A. Z. & Taheri, S. M. (2020). Statistical and fuzzy clustering methods and their application to clustering Provinces of Iraq based on agricultural products. AUT Journal Mathematics and Computing, 1(1), 101-112. https://doi.org/10.22060/ajmc.2019.14873.1013
Bora, D. J. & Gupta, A. K. (2014). A comparative study between fuzzy clustering algorithm and hard clustering algorithm. International Journal of Computer Trends and Technology (IJCTT), 10(2), 108-113. https://doi.org/10.14445/22312803/IJCTT-V10P119
Bose, I., & Chen, X. (2015). Detecting the migration of mobile service customers using fuzzy clustering. Information & Management, 52(2), 227-238. https://doi.org/10.1016/j.im.2014.11.001
Huang, C.-W., Lin, K.-P., Wu, M.-C., Hung, K.-C., Liu, G.-S., & Jen, C.-H. (2014). Intuitionistic fuzzy c -means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Computing, 19(2), 459-470. https://doi.org/10.1007/s00500-014-1264-2
Jahromi, A. T., Er, M. J., Li, X., & Lim, B. S. (2016). Sequential fuzzy clustering based dynamic fuzzy neural network for fault diagnosis and prognosis. Neurocomputing, 196, 31-41. https://doi.org/10.1016/j.neucom.2016.02.036
Kusumadewi, S. (2010). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Graha Ilmu, Yogyakarta
Li, Y., Yang, G., He, H., Jiao, L., & Shang, R. (2015). A study of large-scale data clustering based on fuzzy clustering. Soft Computing, 20(8), 3231-3242. https://doi.org/10.1007/s00500-015-1698-1
Liu, Y., Chen, J., Wu, S., Liu, Z., & Chao, H. (2018). Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance. PLOS ONE, 13(5), 1-25. https://doi.org/10.1371/journal.pone.0197499
Maity, S. P., Chatterjee, S., & Acharya, T. (2016). On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Processing, 49, 104-115. https://doi.org/10.1016/j.dsp.2015.10.006
Peng, H.-W., Wu, S.-F., Wei, C.-C., & Lee, S.-J. (2015). Time series forecasting with a neuro-fuzzy modeling scheme. Applied Soft Computing, 32, 481-493. https://doi.org/10.1016/j.asoc.2015.03.059
Schäfer, H., Viegas, J. L., Ferreira, M. C., Vieira, S. M., & Sousa, J. M. (2015). Analysing the segmentation of energy consumers using mixed fuzzy clustering. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-7. https://doi.org/10.1109/FUZZ-IEEE.2015.7338120.
Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151-165. https://doi.org/10.1016/j.asoc.2014.11.063
Stetco, A., Zeng, X.-j., & Keane, J. (2013). Fuzzy cluster analysis of financial time series and their volatility assessment. 2013 IEEE International Conference on Systems. https://doi.org/10.1109/SMC.2013.23
Wu, Z., Zhang, H., & Liu, J. (2014). A fuzzy support vector machine algorithm for classification based on a novel PIM fuzzy clustering method. Neurocomputing, 125, 119-124. https://doi.org/10.1016/j.neucom.2012.07.049
Xianfeng, Y., & Pengfei, L. (2015). Tailoring fuzzy c-means clustering algorithm for big data using random sampling and particle swarm optimization. International Journal of Database Theory and Application, 8(3), 191-202. https://doi.org/10.14257/ijdta.2015.8.3.16.
DOI: https://doi.org/10.21831/pythagoras.v17i2.54897
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X