Seleksi Nilai Fuzziness Exponent Optimal pada Algoritma Fuzzy c-Means untuk Mengelompokkan Provinsi di Indonesia Berdasarkan Indikator Pembangunan Ekonomi
DOI:
https://doi.org/10.21831/pythagoras.v17i2.54897Keywords:
c-means, fuzzy c-means, fuzziness exponent, partisi, indikator pembangunan ekonomiAbstract
References
Ahmad, A. (2016). Evaluation of modified categorical data fuzzy clustering algorithm on the Wisconsin Breast Cancer dataset. Scientifica (Cairo), 2016, 1-6. https://doi.org/10.1155/2016/4273813
Alia, O. M. (2014). A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks. The Scientific World Journal, 2014, 1-9. https://doi.org/10.1155/2014/647281
Atiyah, I. A. Z. & Taheri, S. M. (2020). Statistical and fuzzy clustering methods and their application to clustering Provinces of Iraq based on agricultural products. AUT Journal Mathematics and Computing, 1(1), 101-112. https://doi.org/10.22060/ajmc.2019.14873.1013
Bora, D. J. & Gupta, A. K. (2014). A comparative study between fuzzy clustering algorithm and hard clustering algorithm. International Journal of Computer Trends and Technology (IJCTT), 10(2), 108-113. https://doi.org/10.14445/22312803/IJCTT-V10P119
Bose, I., & Chen, X. (2015). Detecting the migration of mobile service customers using fuzzy clustering. Information & Management, 52(2), 227-238. https://doi.org/10.1016/j.im.2014.11.001
Huang, C.-W., Lin, K.-P., Wu, M.-C., Hung, K.-C., Liu, G.-S., & Jen, C.-H. (2014). Intuitionistic fuzzy c -means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Computing, 19(2), 459-470. https://doi.org/10.1007/s00500-014-1264-2
Jahromi, A. T., Er, M. J., Li, X., & Lim, B. S. (2016). Sequential fuzzy clustering based dynamic fuzzy neural network for fault diagnosis and prognosis. Neurocomputing, 196, 31-41. https://doi.org/10.1016/j.neucom.2016.02.036
Kusumadewi, S. (2010). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Graha Ilmu, Yogyakarta
Li, Y., Yang, G., He, H., Jiao, L., & Shang, R. (2015). A study of large-scale data clustering based on fuzzy clustering. Soft Computing, 20(8), 3231-3242. https://doi.org/10.1007/s00500-015-1698-1
Liu, Y., Chen, J., Wu, S., Liu, Z., & Chao, H. (2018). Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance. PLOS ONE, 13(5), 1-25. https://doi.org/10.1371/journal.pone.0197499
Maity, S. P., Chatterjee, S., & Acharya, T. (2016). On optimal fuzzy c-means clustering for energy efficient cooperative spectrum sensing in cognitive radio networks. Digital Signal Processing, 49, 104-115. https://doi.org/10.1016/j.dsp.2015.10.006
Peng, H.-W., Wu, S.-F., Wei, C.-C., & Lee, S.-J. (2015). Time series forecasting with a neuro-fuzzy modeling scheme. Applied Soft Computing, 32, 481-493. https://doi.org/10.1016/j.asoc.2015.03.059
Schäfer, H., Viegas, J. L., Ferreira, M. C., Vieira, S. M., & Sousa, J. M. (2015). Analysing the segmentation of energy consumers using mixed fuzzy clustering. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1-7. https://doi.org/10.1109/FUZZ-IEEE.2015.7338120.
Sert, S. A., Bagci, H., & Yazici, A. (2015). MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks. Applied Soft Computing, 30, 151-165. https://doi.org/10.1016/j.asoc.2014.11.063
Stetco, A., Zeng, X.-j., & Keane, J. (2013). Fuzzy cluster analysis of financial time series and their volatility assessment. 2013 IEEE International Conference on Systems. https://doi.org/10.1109/SMC.2013.23
Wu, Z., Zhang, H., & Liu, J. (2014). A fuzzy support vector machine algorithm for classification based on a novel PIM fuzzy clustering method. Neurocomputing, 125, 119-124. https://doi.org/10.1016/j.neucom.2012.07.049
Xianfeng, Y., & Pengfei, L. (2015). Tailoring fuzzy c-means clustering algorithm for big data using random sampling and particle swarm optimization. International Journal of Database Theory and Application, 8(3), 191-202. https://doi.org/10.14257/ijdta.2015.8.3.16.
Additional Files
Published
How to Cite
Issue
Section
Citation Check
License

Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.


