Tinjauan Matematis Waktu Tundaan pada Model Covid-19 dengan Vaksinansi
Ahmadi Ahmadi, Program Studi Matematika, Universitas Negeri Yogyakarta, Indonesia
Abstract
Artikel ini membahas pemodelan matematika penyebaran Covid-19 dengan vaksinasi yang melibatkan waktu tundaan. Waktu tundaan merepresentasikan waktu individu mengalami penurunan kekebalan tubuh sehingga kembali rentan terhadap Covid-19 setelah sembuh. Kita tahu bahwa individu yang dinyatakan sembuh dari Covid-19 dapat terinfeksi kembali. Penelitian ini menganalisa titik ekuilibirum beserta kestabilannya, menentukan bilangan reproduksi dasar untuk melihat penyebaran penyakit, menentukan jenis bifurkasi yang muncul yang diakibatkan oleh waktu tundaan, dan melakukan simulasi numerik untuk melihat perilaku penyebaran penyakit. Di samping itu juga dilakukan kajian analitik untuk menentukan bilangan reproduksi dasar dan analisa perbandingan kestabilan lokal untuk model tanpa waktu tundaan dan dengan waktu tundaan. Hasil dari analisis terhadap model didapat dua titik ekuilibrium, yakni satu bebas penyakit dan satu endemik. Pada model dengan waktu tundaan diperoleh bahwa waktu tundaan tertentu dapat menyebabkan munculnya solusi periodik artinya akan terjadi fluktuasi banyaknya individu yang terinveksi pada periode waktu tertentu. Simulasi numerik dengan mengubah ubah parameter waktu tundaan dan tingkat vaksinasi menunjukkan pada kondisi endemik model dengan waktu tundaan akan menyebabkan lebih banyak individu yang terinveksi dari pada model tanpa waktu tundaan.
Mathematical Overview of Time Delay on Covid 19 Models with Vaccination
Abstract
This article discusses the mathematical modeling of the spread of Covid-19 with vaccination which involves a time delay. The time delay is represented when an individual experiences a decreased immune system so that he is declared susceptible to Covid-19 after recovering. Because we know that individuals who are declared cured of Covid-19 can be reinfected, this study analyzes the equilibrium point of the model and its stability, determines the primary reproduction number to see the spread of the disease, determines the type of bifurcation that appears due to the time delay, and performs numerical simulations. To see the behavior of the spread of the disease. In addition, analytical studies were carried out to determine the primary reproduction number and local stability comparison analysis for models without time delay and with time delay. The model analysis results obtained two equilibrium points, one free of disease and one endemic. In the time-delayed model, the value of the time-delay parameter is obtained, which causes the emergence of a periodic solution, meaning that there will be fluctuations in the number of individuals infected in a certain period. Numerical simulations by changing the time delay parameters and vaccination rates show that in endemic conditions, models with time delays will cause more individuals to be infected than models that do not use time delays.
Keywords
Full Text:
PDFReferences
Ahmadi, A., & Widodo, W. (2020). Local stability of malware propagation model on network computer with two time delay. AIP Conference Proceedings 2296, 020087.https://doi.org/10.1063/5.0030321.
Raza,A., Ahmadian, A., Rafiq, M., Salahshour, S., Naveed, M., Ferrara, M., Soori, A. H.(2020).Modeling the effect of delay strategy on transmission dynamics of HIV/AIDS disease. Advances in Difference Equations, 663. https://doi.org/10.1186/s13662-020-03116-8.
Chukwu, C. W.,Fatmawati, F. (2022). Modelling fractional-order dynamics of COVID-19 with environmental transmission and vaccination: acase study of Indonesia.AIMS Mathematics, 7(3),4416-4438. https:/doi.org/10.3934/math.2022246
Chen, T.M.,Rui, J.,Wang, Q.P.,Zhao, Z.Y.,Cui,J.A.,Yin, L.(2020).Amathematical model for simulating the phase-based transmissibility of a novel coronavirus.Infectious Disease of Poverty,9(24),1-8. https://doi.org/10.1186/s40249-020-00640-3
Eikenberry, S.E.,Mancuso, M.,Iboi, E.,Phan, T.,Eikenberry, K.,Kuang, Y.,Kostelich, E.,Gumel, A.B.(2020).To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic.Infectious Disease Modelling,5,293-308. https://doi.org/10.1016/j.idm.2020.04.001
Saptaningtyas, F. Y., Prihantini, P.(2018). Stability analysis model of Bacillus antracis using SEIQR population compartment with quarantine in Indonesia. Journal of Physics:Conference Series, 983,012088. https://doi.org/10.1088/1742-6596/983/1/012088
Gilbert,M., Pullano, G.,Pinotti, F.,Valdano, E.,Poletto, C.,Boëlle, P.Y., D”Ortenzio, E., Yazdanpanah, Y., Eholie, S. P., Altman, M., Gutierrez, B., Kraemer, M. U. G., Colizza, V.(2020).Preparedness and vulnerability of African countries against importations of COVID-19: amodelling study.The Lancet,395, 871-877. https://doi.org/10.1016/S0140-6736(20)30411-6
Iboi, E.,Sharomi, O.O.,Ngonghala, C.,Gumel, A.B.(2020).Mathematical modeling and analysis of COVID-19 pandemic in Nigeria.MedRxiv. https://doi.org/10.1101/2020.05.22.20110387
(ga ada di text) Kar, T. K. (2003). Selective harvesting in a prey-predator fishery with time delay. Mathematical and Computer Modelling, 38(3-4),449-458. https://doi.org/10.1016/S0895-7177(03)90099-9
Musa, S. S., Qureshi, S., Zhao, S., Yusuf, A., Mustapha, U. T., He, D.(2021).Mathematical modeling of COVID-19 epidemic with effect of awareness programs.Infectious Disease Modelling,6,448-460.https://doi.org/10.1016/j.idm.2021.01.012
Ngonghala,C.N.,Iboi,E.,Eikenberry, S.,Scotch, M.,MacIntyre, C.R.,Bonds, M.H.,Gumel,A.B.(2020).Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus.Mathematical Biosciences, 325,108364. https://doi.org/10.1016/j.mbs.2020.108364
Nuraini,N., Sukandar, K.K, Hadisoemarto, P., Susanto, H., Hasan, A.I.,Sumarti, N.(2021). Mathematical models for assessing vaccination scenarios in several provinces in Indonesia.Infectious Disease Modelling, 6, 1236-1258. https://doi.org/10.1016/j.idm.2021.09.002
Devipriya, R., Dhamodharavadhani, S., Selvi, S. (2021). SEIR model for covid-19 epidemic using delay differential equation. Journal of Physics: Conference Series,1767012005. https://iopscience.iop.org/article/10.1088/1742-6596/1767/1/012005
Saidi, S., Herawati, N.,Nisa, K.(2021). Modeling with generalized linear model on covid-19: Cases in Indonesia. International Journal of Electronics and Communications System,1(1), 25-32. http://ejournal.radenintan.ac.id/index.php/IJECS/article/view/9299
Sugianto, S.,Abrori, M. (2020). A mathematical model of the covid-19 cases in Indonesia (under and without lockdownenforcement).Biology, Medicine, & Natural Product Chemistry, 9(1), 15-19. https://doi.org/10.14421/biomedich.2020.91.15-19.
Annas, S., Pratama, M. I.,Rifandi, M.Sanusi, W., Side, S. (2020). Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals,139, 11007. https://doi.org/10.1016/j.chaos.2020.110072
Tang,B.,Wang, X.,Li, Q.,Bragazzi, N.L.,Tang, S.,Xiao, Y.,Wu,J.(2020).Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions.Journal of Clinical Medicine,9(2), 462. https:/doi.org/10.3390/jcm9020462
Wu,J.T.,Leung, K.,Leung, G. M.(2020).Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: amodelling study.The Lancet,395(10225),689-697. https://doi.org/10.1016/S0140-6736(20)30260-9
Wu, P.,Hao, X.,Lau, E.H.Y.,Wong,J.Y.,Leung,K.S.M.,Wu, J.T.,Cowling, B. J., Leung, G. M.(2020).Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, asat 22 January 2020.Eurosurveillance,25(3),2000044. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000044
Yang, C., Yang, Y.,Li, Z., Zhang, L.(2021). Modelling and analysis of COVID-19 base on a time delay dynamic model.Mathematical Biosciences and Engineering,18(1), 154-165. https://doi.org/10.3934/mbe.2021008
Yang,H. M., Lombardi Junior,L. P, Castro F. F. M., Yang A. C. (2021). Mathematical modeling of the transmission of SARS-CoV-2—evaluating the impact of isolation in São Paulo State (Brazil) and lockdown in Spain associated with protective measures on the epidemic of CoViD-19. PLoS ONE,16(6),e0252271.https://doi.org/10.1371/journal.pone.0252271
DOI: https://doi.org/10.21831/pythagoras.v17i1.49372
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X