PEMBELAJARAN MATEMATIKA MODEL IDEAL PROBLEM SOLVING DENGAN TEORI PEMROSESAN INFORMASI UNTUK PEMBENTUKAN PENDIDIKAN KARAKTER DAN PEMECAHAN MASALAH MATERI DIMENSI TIGA KELAS X SMA
Sukestiyarno Sukestiyarno, , Indonesia
Abstract
This study aims to: (1) generate a valid learning tool and (2) the implementation of an effective learning device. Development of learning tools using a modified model of Thiagarajan. Techniques of data analysis with descriptive analysis, test mastery learning using t-test, z proportions, regression testing, and test for normality gain. The results showed that: (1) a device developed has been declared valid by the validator with an average score of 4.18 for the syllabus, 4.24 for RPP, 4.35 for LKS, 4.37 for the Student Book, 4,00 for the TKPM and (2) test devices produce (a) mastery of problem-solving ability of students eligible 75,00 statistically complete with average 77.58 (b) curiosity and problem solving skills positively by 63.7% of the problem-solving abilities with equation Y = -11.120 + 0.988X1 + 0.941X2 (c) increase the curiosity of 4 selected samples ranged from 0.33 to 0.58 and problem solving skills ranged from 0.31 to 0.41 are included in the medium category (d) affect the learning process of the formation of character education and problem solving include attention, memory, thinking processes, and response.
Keywords: IDEAL Problem Solving, Information Processing Theory, Character Education
Keywords
Full Text:
PDFReferences
Badan Standar Nasional Pendidikan. 2006. Standar Kompetensi dan Kompetensi Dasar Matematika SMP/MTs dalam Standar Isi untuk Satuan Pendidikan Dasar dan Menengah. Jakarta.
Bransford, J.danB.S. Stein. 1993. The IDEAL Problem Solver: A Guide for Improving Thinking, Learning, and Creativity (2nd ed). New York: W.H. Freeman.
Grabe, M. 1986. Attentional processes in education. In G. Phye & T.Andre (Eds.), Cognitive classroom learning (pp. 49-82). Orlando, FL: Academic Press.
Hake,R. 1998. Interactive Engagement v.s Traditional Methods: Six-Thousand Student Survey Of Mechanics Test Data For Introductory Physics Courses. American Journal of Physics. Vol. 66 (1) 64-67.
Henton, J., Baden. R.M. dan Kieren, D., 1979. Problem Solving in the Classroom. The Family Coordinator Volume 28No. 1. Hal 61-66. Published by: National Council on Family Relations.
Jonassen, D.H. 1997. Instructional Design Models for Well-Structured and lll-structured Problem-Solving Learning Outcomes. Educational Technology Research and Development, Volume 45 No. 1. Hal 65-94. New York: Springer.
Obel M.A & E.M. Maletsky. 2001. Mengajar Matematika. Sebuah Buku Sumber Alat Peraga, Aktivitas dan Strategi. Jakarta: Erlangga.
Sudjana, N. 2005. Penilaian Hasil Proses Belajar Mengajar. Jakarta: PT. Remaja Rosdakarya.
Sukestiyarno, YL. 2012. Olah Data Penelitian berbantuan SPSS. Semarang: UNNES
Thiagarajan, S., D. S. Semmel and M. I. Semmel. 1974. Instructional Development for Training Teachers of Exceptional Children. A Source Book. Blomington: Indiana University.
Tisngati, U. 2012. “Membangun Karakter Dalam Pembelajaran Matematika Melalui Ketrampilan Komunikasi”. Makalah. Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY. Yogyakarta.
Widyantini, Th. 2008. Paket Fasilitasi Pemberdayaan KKG dan MGMP Matematika. Yogyakarta: Pusat Pengembangan dan Pemberdayaan Pendidik dan Tenaga Kependidikan (PPPPTK) Matematika.
Winkel, W. S. 2009. Psikologi Pengajaran. Media Abadi: Yogyakarta.
DOI: https://doi.org/10.21831/pg.v7i2.4778
Refbacks
- There are currently no refbacks.
PYTHAGORAS: Jurnal Matematika dan Pendidikan Matematika indexed by:
Pythagoras is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at http://journal.uny.ac.id/index.php/pythagoras.
All rights reserved p-ISSN: 1978-4538 | e-ISSN: 2527-421X